全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
2063 1
2013-04-06
Simulated annealing is a popular local search meta-heuristic used to address discrete
and, to a lesser extent, continuous optimization problems. The key feature of simulated annealing
is that it provides a means to escape local optima by allowing hill-climbing moves (i.e., moves
which worsen the objective function value) in hopes of finding a global optimum. A brief history
of simulated annealing is presented, including a review of its application to discrete and continuous
optimization problems. Convergence theory for simulated annealing is reviewed, as well
as recent advances in the analysis of finite time performance. Other local search algorithms are
discussed in terms of their relationship to simulated annealing. The chapter also presents practical
guidelines for the implementation of simulated annealing in terms of cooling schedules,5

附件列表

montecarlo methods1.pdf

大小:197.99 KB

只需: 1 个论坛币  马上下载

MonteCarlo.pdf

大小:235.08 KB

只需: 1 个论坛币  马上下载

SimmulatedAnealling.pdf

大小:597.07 KB

只需: 1 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-4-6 17:42:41
感恩分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群