全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
2297 2
2007-09-18

Consider a rational preference relation R. Prove that if u(x)=u(y) implies x~y, u(x)>u(y) implies xPy (which means x is strictly preferred to y), the u(.) is a utility function representing R.

My consideration of this problem:

for any x, if there is and only a unique u(x) exist, that is defined as the reflaction of f:x->u(x), to prove this and we can get the existence of UF representing R.

assuming that for a single x, exist more than one u(x) reflecting in the space U, say u(x) and u(y).

if u(x)=u(y), x only have one reflection in U.

if u(x)not=u(y), we can assume either u(x)>u(y) or the opposite. then from above condition we know that this must implies xPy relation. since u(y) also represent x, follows x~y. Here we generate contradiction from our assumption which means the assumption is wrong.

as a result, for a single x, there is only one u exists in the U space, which shows the function relationship between x and u(x).

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2007-9-18 14:05:00

设C是给定的消费空间,R是在C上定义的一个理性偏好,本题等价于证明:对于任意x,y∈C,当且仅当yRx,有u(y)≥u(x)。

由理性偏好的完备性,下列情况必居其一:xRyyRx

依题设(根据逆否命题等价),若yRx,即xPy不成立则u(x)>u(y)不成立,即u(y)≥u(x);同时,若u(y)≥u(x),则要么yPx,要么yx,即yRx。故当且仅当yRx,有u(y)≥u(x)。

考虑若xRy的情况同样。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-9-18 15:35:00

非常感谢bz大人!我实在是基本的数理逻辑没学好,解这类证明最faint了。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群