全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
1855 0
2013-05-18


The building blocks of the Sharpe ratio--expected returns and volatilities--are unknown quantities that must be estimated statistically and are, therefore, subject to estimation error. This raises the natural question: How accurately are Sharpe ratios measured? To address this question, I derive explicit expressions for the statistical distribution of the Sharpe ratio using standard asymptotic theory under several sets of assumptions for the return-generating process--independently and identically distributed returns, stationary returns, and with time aggregation. I show that monthly Sharpe ratios cannot be annualized by multiplying by the square root of 12 except under very special circumstances, and I derive the correct method of conversion in the general case of stationary returns. In an illustrative empirical example of mutual funds and hedge funds, I find that the annual Sharpe ratio for a hedge fund can be overstated by as much as 65 percent because of the presence of serial correlation in monthly returns, and once this serial correlation is properly taken into account, the rankings of hedge funds based on Sharpe ratios can change dramatically.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群