全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
2198 9
2013-05-20
求教求用Girsanov定理求解此文章1220页(10)式第二行中的期望值,困惑困惑~~~~~睡不着觉,期待牛人帮帮忙~~
附件列表

Klein1996.pdf

大小:835.88 KB

只需: 10 个论坛币  马上下载

求用Girsanov定理求解此文章1220页(10)式第二行中的期望值

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-5-20 17:38:10
不要买那个文章,我发错了,网上有下载的
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-5-20 17:44:57
我再把我的问题描述下:Klein, P.C. “Pricing Black-Scholes Options with Correlated
Credit Risk.” Journal of Banking and Finance, 20 (1996), pp.
1211-1229.
这篇文章中的公式(10)中第二行期望用GIRSANOV定理如何求解?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-5-20 18:08:38
没找到哪里可以下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-5-21 09:10:56
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-5-21 12:51:32
aliceww2012 发表于 2013-5-20 17:44
我再把我的问题描述下:Klein, P.C. “Pricing Black-Scholes Options with Correlated
Credit Risk.” Jo ...
OK, I briefly go through the paper.

I give an example:

suppose you want to solve E*(ST|ST>K,VT>D).

The thing you want to do is to write it into E*(ST)E(?)(I{ST>K,VT>D}) where I{} is an indicator function taking 1 only when ST>K and VT>D.

I think your question is want to know how to use Girsanov to change from risk neutral measure (*) to the new unknown measure (?)

To do this, you have to construct a likelihood ratio to "eliminate" ST.

E*(ST|ST>K,VT>D)=E*(ST) E*(I{ST>K,VT>D}*ST/E*(ST)), if you take ST/E*(ST) as a likelihood ratio, you can change the measure from * to ?

that is E*(ST) E*(I{ST>K,VT>D}*ST/E*(ST))=E*(ST) E(?)(I{ST>K,VT>D})

your next task is to find out the drift of S and V in the new measure using Girsanov.

Note that ST/E*(ST)=St*exp((r-0.5*sigma^2)(T-t)+sigma*W(T-t))/(St*exp(r(T-t))

so ST/E*(ST)=exp(-0.5*sigma^2*(T-t)+sigma*W(T-t))
=exp(-∫(t to T)0.5(-sigma)^2ds -∫(t to T) (-sigma)dW(s))

we know that ST/E*(ST) is the likelihood ratio

dQ(?)/dQ(*)=exp(-∫(t to T)0.5(-sigma)^2ds -∫(t to T) (-sigma)dW(s))

what the Girsanov theorem says is that if dW is a brownian motion under Q* measure, dW+theta*dt is also a brownian motion under Q(?) measure. The two measures are linked with the likelihood ratio:

dQ(?)/dQ(*)=exp(-∫(t to T)0.5(theta)^2ds -∫(t to T) (theta)dW(s))

So you compare the two dQ(?)/dQ(*) and find out that theta=-sigma (sigma here means the volatility of S)

this gives you the result that under Q(?) measure the drift of dS and dV are r+sigma_S^2 and r+sigma_V*sigma_S.

You now have the joint distribution of S and V under the new measure.

The remaining task is just to integrate the bivariate joint lognormal on the area ST>K and VT>D, its easy.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群