全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管百科 爱问频道
919 3
2013-06-23
When we assume a perfect market and no arbitrage opportunities, we can find some relationships between option prices that do not require any assumptions about volatility and the probabilistic behaviour of stock prices.

(a) Explain the arbitrage restrictions on option price with respect to its underlying asset price and the payoffs at the maturity. How these restrictions can be used to derive the Black-Scholes option pricing formula?

(b) Show the following relationship is true;
i) C(S,T1,E) > C(S,T2,E) where T1 > T2, and
ii) C(S,T,E1) > C(S,T,E2) where E1 < E2,
where C is an American call option, S is the stock price, T is the time to maturity and E is the exercise price.

(c) Suppose the following three options for the same underlying asset (S) with the same time-to-maturity (T), but with different exercise prices: C(S,T,E1), C(S,T,E2) and C(S,T,E3) where E2=(E1+E3)/2 and E3<E2<E1. Demonstrate that C(S,T,E1)+C(S,T,E3) > 2C(S,T,E2) and explain the implication of this boundary condition.




主要是(b)和(c)想请教一下各位大师~

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-6-23 15:00:16
请教各位了~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-6-23 15:02:36
这部分不是很明白~请教大师们啊~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-6-24 09:54:15
大师们~~帮小妹解答一下下~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群