全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Gauss专版
7607 13
2013-07-27
我运行了一下程序,结果显示有错误,我是初学者,可能在变量设置方面有些问题,请各位大侠指点指点,非常感谢
load yyy[1452,2] = data.txt;      @read data@
bigt=1452;                        @set effective sample size@
y=yyy[1:1452,1];                @set up the data, y is the dependent variable
                                z is the matrix of regressors (bigt,q) whose
                                coefficients are allowed to change, x is a
                                (bigt,p) matrix of regressors with coefficients
                                fixed across regimes. Note: initialize x to
                                something, say 0, even if p = 0.@
z=yyy[1:1452,2];

x=0;

q=1;                         @number of regressors z@
p=0;                         @number of regressors x@
m=5;                         @maximum number of structural changes allowed@
eps1=.15;                  @Value of the trimming (in percentage) for the construction
                                  and critical values of the supF ype tests (used in the
                                 supF test, the Dmax, the supF(l+1|l) and the sequential
                                  procedure). If these test are used, h below should be set
                                  at int(eps1*bigt). But if the tests are not required, estimation
                                  can be done with an arbitrary h.
                                  There are five options: eps1 = .05, .10, .15, .20 or .25.
                                  For each option, the maximal value of m above is: 10 for eps1 = .05;
                                  8 for eps1 = .10, 5 for eps1 = .15, 3 for eps1 = .20 and 2 for eps1 = .25.@
h=int(eps1*bigt);                         @minimal length of a segment (h >= q). Note: If
                                  robust=1, h should be set at a larger value.@
/* the following are options if p > 0.
----------------------------------- */
fixb=0;                     @set to 1 if use fixed initial values for beta@
betaini=0;                  @if fixb=1, load the initial value of beta.@
maxi=20;                    @maximum number of iterations for the nonlinear
                             procedure to obtain global minimizers.@
printd=1;                   @set to 1 if want the output from the iterations
                             to be printed.@
eps=0.0001;                 @criterion for the convergence.@
/*--------------------------------- */

robust=0;                   @set to 1 if want to allow for heterogeneity
                             and autocorrelation the in residuals, 0 otherwise.
                             The method used is Andrews(1991) automatic
                             bandwidth with AR(1) approximation and the
                             quadratic quernel. Note: Do not set to 1 if
                             lagged dependent variables are included as
                             regressors.@
prewhit=1;                   @set to 1 if want to apply AR(1) prewhitening
                              prior to estimating the long run covariance
                              matrix@
hetdat=1;              @Option for the construction of the F-tests.
                                Set to 1 if want to allow different moment matrices of the
                               regressors accross segments. If hetdat = 0, the same
                               moment matrices are assumed for each segment and estimated
                               from the full sample. It is recommended to set hetdat=1.  If p > 0
                                set hetdat = 1.@
hetvar=1;              @Option for the construction of the F-tests.
                              Set to 1 if want to allow for the variance of the residuals
                              to be different across segments. If hetvar=0, the variance
                               of the residuals is assumed constant across segments
                              and constructed from the full sample. This option is not available
                              when robust = 1.@
hetomega=1;                @Used in the construction of the confidence
                            intervals for the break dates. If hetomega=0,
                            the long run covariance matrix of zu is assumed
                            identical accross segments (the variance of the
                            errors u if robust = 0).@
hetq=1;                    @Used in the construction of the confidence
                            intervals for the break dates. If hetq=0,
                            the moment matrix of the data is assumed
                            identical accross segments.@
doglobal=1;                 @set to 1 if want to call the procedure
                             to obtain global minimizers.@
dotest=1;                   @set to 1 if want to construct the sup F,
                             UDmax and WDmax tests. doglobal must be set
                             to 1 to run this procedure.@
dospflp1=1;                 @set to 1 if want to construct the sup(l+1|l)
                             tests where under the null the l breaks are
                             obtained using global minimizers. doglobal
                             must be set to 1 to run this procedure.@
doorder=1;                  @set to 1 if want to call the procedure that
                             selects the number of breaks using information
                             criteria. doglobal must be set to 1 to run
                             this procedure.@
dosequa=1;                  @set to 1 if want to estimate the breaks
                             sequentially and estimate the number of
                             breaks using the supF(l+1|l) test.@
dorepart=1;                @set to 1 if want to modify the
                             break dates obtained from the sequential
                             method using the repartition method of
                             Bai (1995), Estimating breaks one at a time.
                             This is needed for the confidence intervals
                             obtained with estim below to be valid.@
estimbic=1;                  @set to 1 if want to estimate the model with
                              the number of breaks selected by BIC.@
estimlwz=0;                  @set to 1 if want to estimate the model with
                              the number of breaks selected by LWZ.@
estimseq=1;                 @set to 1 if want to estimate the model with
                              the number of breaks selected using the
                              sequential procedure.@
estimrep=0;                 @set to 1 if want to esimate the model with
                              the breaks selected using the repartition
                              method.@
estimfix=0;                  @set to 1 if want to estimate the model with
                              a prespecified number of breaks equal to fixn
                              set below.@
fixn=0;

call pbreak(bigt,y,z,q,m,h,eps1,robust,prewhit,hetomega,
hetq,doglobal,dotest,dospflp1,doorder,dosequa,dorepart,estimbic,estimlwz,
estimseq,estimrep,estimfix,fixb,x,q,eps,maxi,fixb,betaini,printd,hetdat,hetvar,fixn);

run  brcode.src    @set the path to where you store the file brcode.src@

end

错误提示:Undefined symbols:    pbreak                          
程序包
mBreak.rar
大小:(24.5 KB)

 马上下载


数据
data.txt
大小:(24.29 KB)

 马上下载



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-7-31 07:41:09
The options chosen are:
h =  15.0000
eps1 =  0.1500
hetdat =  1.0000
hetvar =  1.0000
hetomega =  1.0000
hetq =  1.0000
robust =  1.0000 (prewhit =  1.0000 )
The maximum number of breaks is:  5.0000
********************************************************
Output from the global optimization
********************************************************
The model with 1.0000 breaks has SSR :  25041.7490
The dates of the breaks are:   54.0000
The model with 2.0000 breaks has SSR :  24128.8451
The dates of the breaks are:  
36.0000
74.0000
The model with 3.0000 breaks has SSR :  23772.7669
The dates of the breaks are:  
28.0000
58.0000
88.0000
The model with 4.0000 breaks has SSR :  23600.3538
The dates of the breaks are:  
22.0000
44.0000
66.0000
88.0000
The model with 5.0000 breaks has SSR :  23521.6343
The dates of the breaks are:  
18.0000
36.0000
54.0000
72.0000
88.0000
********************************************************
Output from the testing procedures
********************************************************
a) supF tests against a fixed number of breaks
--------------------------------------------------------------
The supF test for 0 versus 1.0000 breaks (scaled by q) is: 38.4435
The supF test for 0 versus 2.0000 breaks (scaled by q) is: 79.9949
The supF test for 0 versus 3.0000 breaks (scaled by q) is: 81.3064
The supF test for 0 versus 4.0000 breaks (scaled by q) is: 146.2904
The supF test for 0 versus 5.0000 breaks (scaled by q) is: 266.1556
-------------------------
The critical values at the  10.0000 % level are (for k=1 to  5.0000 ):
7.0400  6.2800  5.2100  4.4100  3.4700
The critical values at the  5.0000 % level are (for k=1 to  5.0000 ):
8.5800  7.2200  5.9600  4.9900  3.9100
The critical values at the  2.5000 % level are (for k=1 to  5.0000 ):
10.1800  8.1400  6.7200  5.5100  4.3400
The critical values at the  1.0000 % level are (for k=1 to  5.0000 ):
12.2900  9.3600  7.6000  6.1900  4.9100
--------------------------------------------------------------
b) Dmax tests against an unknown number of breaks
--------------------------------------------------------------
The UDmax test is:  266.1556
(the critical value at the  10.0000 % level is:  7.4600 )
(the critical value at the  5.0000 % level is:  8.8800 )
(the critical value at the  2.5000 % level is:  10.3900 )
(the critical value at the  1.0000 % level is:  12.3700 )
********************************************************
---------------------
The WDmax test at the  10.0000 % level is:  539.9814
(The critical value is:  8.2000 )
---------------------
The WDmax test at the  5.0000 % level is:  584.0447
(The critical value is:  9.9100 )
---------------------
The WDmax test at the  2.5000 % level is:  624.3004
(The critical value is:  11.6700 )
---------------------
The WDmax test at the  1.0000 % level is:  666.2021
(The critical value is:  13.8300 )
********************************************************
supF(l+1|l) tests using global otimizers under the null
--------------------------------------------------------------
The supF( 2.0000 | 1.0000 ) test is :  26.3623
It corresponds to a new break at:  26.0000
The supF( 3.0000 | 2.0000 ) test is :  74.5517
It corresponds to a new break at:  56.0000
The supF( 4.0000 | 3.0000 ) test is :  3.8529
It corresponds to a new break at:  43.0000
Given the location of the breaks from the global optimization
with  4.0000 breaks there was no more place to insert
an additional breaks that satisfy the minimal length requirement.
The supF( 5.0000 | 4.0000 ) test is :  0.0000
It corresponds to a new break at:  0.0000
********************************************************
The critical values of supF(i+1|i) at the  10.0000 % level are (for i=1 to  5.0000 ) are:
7.0400  8.5100  9.4100  10.0400  10.5800
The critical values of supF(i+1|i) at the  5.0000 % level are (for i=1 to  5.0000 ) are:
8.5800  10.1300  11.1400  11.8300  12.2500
The critical values of supF(i+1|i) at the  2.5000 % level are (for i=1 to  5.0000 ) are:
10.1800  11.8600  12.6600  13.4000  13.8900
The critical values of supF(i+1|i) at the  1.0000 % level are (for i=1 to  5.0000 ) are:
12.2900  13.8900  14.8000  15.2800  15.7600
********************************************************
Output from the application of Information criteria
--------------------------------------------------------------
Values of BIC and lwz with  0.0000  breaks:  5.6621  5.6718
Values of BIC and lwz with  1.0000  breaks:  5.5836  5.6685
Values of BIC and lwz with  2.0000  breaks:  5.6364  5.7970
Values of BIC and lwz with  3.0000  breaks:  5.7116  5.9481
Values of BIC and lwz with  4.0000  breaks:  5.7943  6.1073
Values of BIC and lwz with  5.0000  breaks:  5.8809  6.2708
The number of breaks chosen by BIC is : 1.0000
The number of breaks chosen by LWZ is : 1.0000
********************************************************
Output from the sequential procedure at significance level  10.0000 %
--------------------------------------------------------------
The first break found is at:  54.0000
The next break found is at:  26.0000
The next break found is at:  84.0000
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 3.0000
********************************************************
Output from the sequential procedure at significance level  5.0000 %
--------------------------------------------------------------
The first break found is at:  54.0000
The next break found is at:  26.0000
The next break found is at:  84.0000
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 3.0000
********************************************************
Output from the sequential procedure at significance level  2.5000 %
--------------------------------------------------------------
The first break found is at:  54.0000
The next break found is at:  26.0000
The next break found is at:  84.0000
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 3.0000
********************************************************
Output from the sequential procedure at significance level  1.0000 %
--------------------------------------------------------------
The first break found is at:  54.0000
The next break found is at:  26.0000
The next break found is at:  84.0000
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 3.0000
********************************************************
Output from the repartition procedure for the  10.0000 % significance level
----------------------------------------
The updated break dates are :
26.0000
56.0000
84.0000
********************************************************
Output from the repartition procedure for the  5.0000 % significance level
----------------------------------------
The updated break dates are :
26.0000
56.0000
84.0000
********************************************************
Output from the repartition procedure for the  2.5000 % significance level
----------------------------------------
The updated break dates are :
26.0000
56.0000
84.0000
********************************************************
Output from the repartition procedure for the  1.0000 % significance level
----------------------------------------
The updated break dates are :
26.0000
56.0000
84.0000
********************************************************
Output from the estimation of the model selected by BIC
--------------------------------------------------------------
Valid cases:                   103      Dependent variable:                   Y
Missing cases:                   0      Deletion method:                   None
Total SS:                29638.079      Degrees of freedom:                 101
R-squared:                   0.155      Rbar-squared:                     0.147
Residual SS:             25041.749      Std error of est:                15.746
F(2,101):                    9.269      Probability of F:                 0.000
Durbin-Watson:               3.701

                         Standard                 Prob   Standardized  Cor with
Variable     Estimate      Error      t-value     >|t|     Estimate    Dep Var
-------------------------------------------------------------------------------
X1           7.072065    2.142766    3.300437     0.001    0.236636    0.236636
X2          20.448158    2.249436    9.090350     0.000    0.651764    0.651764
--------------------------------------------------------------
Corrected standard errors for the coefficients
--------------------------------------------------------------
The corrected standard error for coefficient 1.0000 is: 1.3558
The corrected standard error for coefficient 2.0000 is: 1.6509
--------------------------------------------------------------
Confidence intervals for the break dates
--------------------------------------------------------------
The 95% C.I. for the 1.0000 th break is:  45.0000  60.0000
The 90% C.I. for the 1.0000 th break is:  48.0000  59.0000
********************************************************
********************************************************
Output from the estimation of the model selected by the
sequential method at significance level  10.0000 %
--------------------------------------------------------------
Valid cases:                   103      Dependent variable:                   Y
Missing cases:                   0      Deletion method:                   None
Total SS:                29638.079      Degrees of freedom:                  99
R-squared:                   0.198      Rbar-squared:                     0.173
Residual SS:             23777.730      Std error of est:                15.498
F(4,99):                     6.100      Probability of F:                 0.000
Durbin-Watson:               3.876

                         Standard                 Prob   Standardized  Cor with
Variable     Estimate      Error      t-value     >|t|     Estimate    Dep Var
-------------------------------------------------------------------------------
X1           3.582121    3.039351    1.178581     0.241    0.083170    0.083170
X2          10.312727    2.928792    3.521153     0.001    0.248480    0.248480
X3          17.542313    2.829482    6.199832     0.000    0.437508    0.437508
X4          25.036334    3.555419    7.041739     0.000    0.496919    0.496919
--------------------------------------------------------------
Corrected standard errors for the coefficients
--------------------------------------------------------------
The corrected standard error for coefficient 1.0000 is: 0.7856
The corrected standard error for coefficient 2.0000 is: 1.0187
The corrected standard error for coefficient 3.0000 is: 0.7622
The corrected standard error for coefficient 4.0000 is: 1.2486
--------------------------------------------------------------
Confidence intervals for the break dates
--------------------------------------------------------------
The 95% C.I. for the 1.0000 th break is:  18.0000  30.0000
The 90% C.I. for the 1.0000 th break is:  20.0000  29.0000
The 95% C.I. for the 2.0000 th break is:  50.0000  61.0000
The 90% C.I. for the 2.0000 th break is:  51.0000  59.0000
The 95% C.I. for the 3.0000 th break is:  77.0000  88.0000
The 90% C.I. for the 3.0000 th break is:  79.0000  87.0000
********************************************************
for the  5.0000 % level, the model is the same as for the  10.0000 % level.
The estimation is not repeated.
----------------------------------------------------------------
for the  2.5000 % level, the model is the same as for the  5.0000 % level.
The estimation is not repeated.
----------------------------------------------------------------
for the  1.0000 % level, the model is the same as for the  2.5000 % level.
The estimation is not repeated.
----------------------------------------------------------------
********************************************************
Output from the estimation of the model with 2.0000 breaks
--------------------------------------------------------------
Valid cases:                   103      Dependent variable:                   Y
Missing cases:                   0      Deletion method:                   None
Total SS:                29638.079      Degrees of freedom:                 100
R-squared:                   0.186      Rbar-squared:                     0.170
Residual SS:             24128.845      Std error of est:                15.533
F(3,100):                    7.611      Probability of F:                 0.000
Durbin-Watson:               3.828

                         Standard                 Prob   Standardized  Cor with
Variable     Estimate      Error      t-value     >|t|     Estimate    Dep Var
-------------------------------------------------------------------------------
X1           4.829310    2.588910    1.865383     0.065    0.131939    0.131939
X2          14.051807    2.519860    5.576423     0.000    0.394423    0.394423
X3          23.311290    2.884492    8.081594     0.000    0.571615    0.571615
--------------------------------------------------------------
Corrected standard errors for the coefficients
--------------------------------------------------------------
The corrected standard error for coefficient 1.0000 is: 1.0103
The corrected standard error for coefficient 2.0000 is: 1.4624
The corrected standard error for coefficient 3.0000 is: 1.0258
--------------------------------------------------------------
Confidence intervals for the break dates
--------------------------------------------------------------
The 95% C.I. for the 1.0000 th break is:  24.0000  41.0000
The 90% C.I. for the 1.0000 th break is:  28.0000  39.0000
The 95% C.I. for the 2.0000 th break is:  70.0000  86.0000
The 90% C.I. for the 2.0000 th break is:  71.0000  82.0000
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-31 07:44:10
你的文件做的:


// Welcome to GAUSS

You've just run the GAUSS startup file.  It's called "startup" in your
GAUSS home directory.  You may modify it to contain your own custom
commands or simply delete it.

To run an example program, enter the following at the command prompt:

run ols.e

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-31 07:47:50
The options chosen are:
h =  217.0000
eps1 =  0.1500
hetdat =  1.0000
hetvar =  1.0000
hetomega =  1.0000
hetq =  1.0000
robust =  1.0000 (prewhit =  1.0000 )
The maximum number of breaks is:  5.0000
********************************************************
Output from the global optimization
********************************************************
The model with 1.0000 breaks has SSR :  1.2031
The dates of the breaks are:   217.0000
The model with 2.0000 breaks has SSR :  1.1450
The dates of the breaks are:  
217.0000
1197.0000
The model with 3.0000 breaks has SSR :  1.0559
The dates of the breaks are:  
217.0000
746.0000
1184.0000
The model with 4.0000 breaks has SSR :  1.0096
The dates of the breaks are:  
217.0000
526.0000
746.0000
1184.0000
The model with 5.0000 breaks has SSR :  0.9880
The dates of the breaks are:  
217.0000
526.0000
746.0000
980.0000
1197.0000
********************************************************
Output from the testing procedures
********************************************************
a) supF tests against a fixed number of breaks
--------------------------------------------------------------
The supF test for 0 versus 1.0000 breaks (scaled by q) is: 1.7717
The supF test for 0 versus 2.0000 breaks (scaled by q) is: 1.5088
The supF test for 0 versus 3.0000 breaks (scaled by q) is: 2.0733
The supF test for 0 versus 4.0000 breaks (scaled by q) is: 2.8230
The supF test for 0 versus 5.0000 breaks (scaled by q) is: 3.2393
-------------------------
The critical values at the  10.0000 % level are (for k=1 to  5.0000 ):
7.0400  6.2800  5.2100  4.4100  3.4700
The critical values at the  5.0000 % level are (for k=1 to  5.0000 ):
8.5800  7.2200  5.9600  4.9900  3.9100
The critical values at the  2.5000 % level are (for k=1 to  5.0000 ):
10.1800  8.1400  6.7200  5.5100  4.3400
The critical values at the  1.0000 % level are (for k=1 to  5.0000 ):
12.2900  9.3600  7.6000  6.1900  4.9100
--------------------------------------------------------------
b) Dmax tests against an unknown number of breaks
--------------------------------------------------------------
The UDmax test is:  3.2393
(the critical value at the  10.0000 % level is:  7.4600 )
(the critical value at the  5.0000 % level is:  8.8800 )
(the critical value at the  2.5000 % level is:  10.3900 )
(the critical value at the  1.0000 % level is:  12.3700 )
********************************************************
---------------------
The WDmax test at the  10.0000 % level is:  6.5720
(The critical value is:  8.2000 )
---------------------
The WDmax test at the  5.0000 % level is:  7.1083
(The critical value is:  9.9100 )
---------------------
The WDmax test at the  2.5000 % level is:  7.5982
(The critical value is:  11.6700 )
---------------------
The WDmax test at the  1.0000 % level is:  8.1082
(The critical value is:  13.8300 )
********************************************************
supF(l+1|l) tests using global otimizers under the null
--------------------------------------------------------------
The supF( 2.0000 | 1.0000 ) test is :  1.2409
It corresponds to a new break at:  1197.0000
The supF( 3.0000 | 2.0000 ) test is :  4.2386
It corresponds to a new break at:  980.0000
The supF( 4.0000 | 3.0000 ) test is :  1.5383
It corresponds to a new break at:  526.0000
The supF( 5.0000 | 4.0000 ) test is :  1.0651
It corresponds to a new break at:  967.0000
********************************************************
The critical values of supF(i+1|i) at the  10.0000 % level are (for i=1 to  5.0000 ) are:
7.0400  8.5100  9.4100  10.0400  10.5800
The critical values of supF(i+1|i) at the  5.0000 % level are (for i=1 to  5.0000 ) are:
8.5800  10.1300  11.1400  11.8300  12.2500
The critical values of supF(i+1|i) at the  2.5000 % level are (for i=1 to  5.0000 ) are:
10.1800  11.8600  12.6600  13.4000  13.8900
The critical values of supF(i+1|i) at the  1.0000 % level are (for i=1 to  5.0000 ) are:
12.2900  13.8900  14.8000  15.2800  15.7600
********************************************************
Output from the application of Information criteria
--------------------------------------------------------------
Values of BIC and lwz with  0.0000  breaks: -6.5506 -6.5500
Values of BIC and lwz with  1.0000  breaks: -7.0857 -7.0671
Values of BIC and lwz with  2.0000  breaks: -7.1252 -7.0886
Values of BIC and lwz with  3.0000  breaks: -7.1962 -7.1416
Values of BIC and lwz with  4.0000  breaks: -7.2310 -7.1584
Values of BIC and lwz with  5.0000  breaks: -7.2426 -7.1520
The number of breaks chosen by BIC is : 5.0000
The number of breaks chosen by LWZ is : 4.0000
********************************************************
Output from the sequential procedure at significance level  10.0000 %
--------------------------------------------------------------
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 0.0000
********************************************************
Output from the sequential procedure at significance level  5.0000 %
--------------------------------------------------------------
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 0.0000
********************************************************
Output from the sequential procedure at significance level  2.5000 %
--------------------------------------------------------------
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 0.0000
********************************************************
Output from the sequential procedure at significance level  1.0000 %
--------------------------------------------------------------
----------------------------------------------------
The sequential procedure estimated the number of breaks at: 0.0000
********************************************************
Output from the repartition procedure for the  10.0000 % significance level
********************************************************
The sequential procedure found no break and
the repartition procedure is skipped.
********************************************************
********************************************************
Output from the repartition procedure for the  5.0000 % significance level
********************************************************
The sequential procedure found no break and
the repartition procedure is skipped.
********************************************************
********************************************************
Output from the repartition procedure for the  2.5000 % significance level
********************************************************
The sequential procedure found no break and
the repartition procedure is skipped.
********************************************************
********************************************************
Output from the repartition procedure for the  1.0000 % significance level
********************************************************
The sequential procedure found no break and
the repartition procedure is skipped.
********************************************************
********************************************************
Output from the estimation of the model selected by BIC
--------------------------------------------------------------
Valid cases:                  1452      Dependent variable:                   Y
Missing cases:                   0      Deletion method:                   None
Total SS:                    2.075      Degrees of freedom:                1446
R-squared:                   0.524      Rbar-squared:                     0.522
Residual SS:                 0.988      Std error of est:                 0.026
F(6,1446):                 265.185      Probability of F:                 0.000
Durbin-Watson:               0.058
                         Standard                 Prob   Standardized  Cor with
Variable     Estimate      Error      t-value     >|t|     Estimate    Dep Var
-------------------------------------------------------------------------------
X1           0.110856    0.001774   62.472631     0.000    0.247019    0.247019
X2           0.182321    0.001487  122.607636     0.000    0.484796    0.484796
X3           0.163337    0.001762   92.682035     0.000    0.366469    0.366469
X4           0.186194    0.001709  108.961790     0.000    0.430840    0.430840
X5           0.200881    0.001774  113.205864     0.000    0.447621    0.447621
X6           0.166143    0.001637  101.497028     0.000    0.401324    0.401324
--------------------------------------------------------------
Corrected standard errors for the coefficients
--------------------------------------------------------------
The corrected standard error for coefficient 1.0000 is: 0.0512
The corrected standard error for coefficient 2.0000 is: 0.0139
The corrected standard error for coefficient 3.0000 is: 0.0064
The corrected standard error for coefficient 4.0000 is: 0.0090
The corrected standard error for coefficient 5.0000 is: 0.0083
The corrected standard error for coefficient 6.0000 is: 0.0136
--------------------------------------------------------------
Confidence intervals for the break dates
--------------------------------------------------------------
The 95% C.I. for the 1.0000 th break is:  161.0000  1555.0000
The 90% C.I. for the 1.0000 th break is:  194.0000  1171.0000
The 95% C.I. for the 2.0000 th break is:  373.0000  2493.0000
The 90% C.I. for the 2.0000 th break is:  448.0000  1938.0000
The 95% C.I. for the 3.0000 th break is:  323.0000  912.0000
The 90% C.I. for the 3.0000 th break is:  445.0000  856.0000
The 95% C.I. for the 4.0000 th break is:  234.0000  1973.0000
The 90% C.I. for the 4.0000 th break is:  466.0000  1678.0000
The 95% C.I. for the 5.0000 th break is:  738.0000  1305.0000
The 90% C.I. for the 5.0000 th break is:  868.0000  1265.0000
********************************************************
********************************************************
for the  5.0000 % level, the model is the same as for the  10.0000 % level.
The estimation is not repeated.
----------------------------------------------------------------
for the  2.5000 % level, the model is the same as for the  5.0000 % level.
The estimation is not repeated.
----------------------------------------------------------------
for the  1.0000 % level, the model is the same as for the  2.5000 % level.
The estimation is not repeated.
----------------------------------------------------------------
********************************************************
Output from the estimation of the model with 2.0000 breaks
--------------------------------------------------------------
Valid cases:                  1452      Dependent variable:                   Y
Missing cases:                   0      Deletion method:                   None
Total SS:                    2.075      Degrees of freedom:                1449
R-squared:                   0.448      Rbar-squared:                     0.447
Residual SS:                 1.145      Std error of est:                 0.028
F(3,1449):                 392.399      Probability of F:                 0.000
Durbin-Watson:               0.051
                         Standard                 Prob   Standardized  Cor with
Variable     Estimate      Error      t-value     >|t|     Estimate    Dep Var
-------------------------------------------------------------------------------
X1           0.110856    0.001908   58.092922     0.000    0.247019    0.247019
X2           0.183094    0.000898  203.901618     0.000    0.867019    0.867019
X3           0.166143    0.001760   94.381473     0.000    0.401324    0.401324
--------------------------------------------------------------
Corrected standard errors for the coefficients
--------------------------------------------------------------
The corrected standard error for coefficient 1.0000 is: 0.0512
The corrected standard error for coefficient 2.0000 is: 0.0069
The corrected standard error for coefficient 3.0000 is: 0.0136
--------------------------------------------------------------
Confidence intervals for the break dates
--------------------------------------------------------------
The 95% C.I. for the 1.0000 th break is:  183.0000  1523.0000
The 90% C.I. for the 1.0000 th break is:  206.0000  1156.0000
The 95% C.I. for the 2.0000 th break is: -611.0000  2961.0000
The 90% C.I. for the 2.0000 th break is: -64.0000  2425.0000
********************************************************
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-31 07:49:22
你用GAUSS9.0,看少不少子程序
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-4-1 10:39:11
在第二次跑程序结果中,设定eps1 =  0.15,所得结果均为拒绝突变点嘛,咋回事
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群