这是一种通过设定随机过程(数据生成系统),反复生成时间序列,并计算参数估计量和统计量,进而研究其分布特征的方法。蒙特卡罗在欧洲的摩那哥,以著名赌城而得名。据说这个术语是Metropolis 在1949年提出的。若再晚些时候,蒙特卡罗模拟也许就称作Las Vegas(在美国的Nevada州,著名赌城)模拟方法了。
自举模拟与蒙特卡罗模拟既有联系,又不相同。自举(Boost trap,亦称靴襻)这个名词是Efron在1979年提出的。“自举”一词来源于儿童故事。指一个人落水时,试图用自提鞋扣儿的方法自救。20世纪80,90年代发展很快。自举,即采用从总体中反复抽取样本的方法计算参数估计量的值,置信区间或相应统计量的值并估计这些量的分布。这里介绍的远不是自举模拟的全貌,而是参数估计方面的应用。进行蒙特卡罗模拟和自举模拟首先要设定数据生成系统。而设定数据生成系统的关键是要产生大量的随机数。例如模拟样本为100的随机趋势过程的DF统计量的分布,若试验1万次,则需要生成200万个随机数。
计算机所生成的随机数并不是“纯随机数”,而是具有某种相同统计性质的随机数。计量经济学中蒙特卡罗模拟和自举模拟所用到的随机数一般是服从N(0,1)分布的随机数。计算机生成的随机数称作“伪随机数”(pseudo-random number)。生成的随机数的程序称作“伪随机数生成系统”。实际上计算机不可能生成纯随机数。
在进行蒙特卡罗模拟时一般要给定多种条件。例如样本容量要选择50,100,200等多种。有时模型形式也要选择多种。从而研究参数估计量和统计量在各种条件下的分布特征。当只需要这几个特定条件下的模拟结果时,把结果纪录下来就可以了。当需要很多条件下的模拟结果时,一般采用估计响应面函数(response surface function)的方法研究之。例如Dicky-Fuller的DF检验表中只给出了样本容量为25,50,100,250,500几个点的DF分布特征。显然对25至500间每个样本容量都进行DF分布模拟是不实际的,也是无必要的。可以把上述几个条件下得到的DF分布百分位数看作样本点,然后采用回归的方法从而得到每个样本容量所对应的DF分布百分位数。这条回归直线称为响应面函数。麦金农的协整检验临界值表就是用这种方法得到的。
进行蒙特卡罗模拟和自举模拟首先要设定数据生成系统。而设定数据生成系统的关键是要产生大量的随机数。例如模拟样本为100的随机趋势过程的DF统计量的分布,若试验1万次,则需要生成200万个随机数。
计算机所生成的随机数并不是“纯随机数”,而是具有某种相同统计性质的随机数。计量经济学中蒙特卡罗模拟和自举模拟所用到的随机数一般是服从N(0,1)分布的随机数。计算机生成的随机数称作“伪随机数”(pseudo-random number)。生成的随机数的程序称作“伪随机数生成系统”。实际上计算机不可能生成纯随机数。
在进行蒙特卡罗模拟时一般要给定多种条件。例如样本容量要选择50,100,200等多种。有时模型形式也要选择多种。从而研究参数估计量和统计量在各种条件下的分布特征。当只需要这几个特定条件下的模拟结果时,把结果纪录下来就可以了。当需要很多条件下的模拟结果时,一般采用估计响应面函数(response surface function)的方法研究之。例如Dicky-Fuller的DF检验表中只给出了样本容量为25,50,100,250,500几个点的DF分布特征。显然对25至500间每个样本容量都进行DF分布模拟是不实际的,也是无必要的。可以把上述几个条件下得到的DF分布百分位数看作样本点,然后采用回归的方法从而得到每个样本容量所对应的DF分布百分位数。这条回归直线称为响应面函数。麦金农的协整检验临界值表就是用这种方法得到的。