全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
15055 49
2007-11-27

Simulation and Monte Carlo: With applications in finance and MCMC (Paperback)
by J. S. Dagpunar (Author)

Simulation and Monte Carlo: With applications in finance and MCMC

  • Paperback: 348 pages
  • Publisher: Wiley (March 23, 2007)
  • Language: English
  • Review
    "…excellent for students and practitioners who don't have previous experience with simulation methods…a great contribution." (MAA Reviews, April 5, 2007)

    Book Description
    Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, together with illustrative applications in Financial Mathematics, Markov chain Monte Carlo, and Discrete Event Simulation.

    Each chapter contains a good selection of exercises and solutions with an accompanying appendix comprising a Maple worksheet containing simulation procedures. The worksheets can also be downloaded from the web site supporting the book. This encourages readers to adopt a hands-on approach in the effective design of simulation experiments.

    Arising from a course taught at Edinburgh University over several years, the book will also appeal to practitioners working in the finance industry, statistics and operations research.

  • 177766.pdf
    大小:(4.54 MB)

    只需: 30 个论坛币  马上下载

  • Contents
    Preface xi
    Glossary xiii
    1 Introduction to simulation and Monte Carlo 1
    1.1 Evaluating a definite integral 2
    1.2 Monte Carlo is integral estimation 4
    1.3 An example 5
    1.4 A simulation using Maple 7
    1.5 Problems 13
    2 Uniform random numbers 17
    2.1 Linear congruential generators 18
    2.1.1 Mixed linear congruential generators 18
    2.1.2 Multiplicative linear congruential generators 22
    2.2 Theoretical tests for random numbers 25
    2.2.1 Problems of increasing dimension 26
    2.3 Shuffled generator 28
    2.4 Empirical tests 29
    2.4.1 Frequency test 29
    2.4.2 Serial test 30
    2.4.3 Other empirical tests 30
    2.5 Combinations of generators 31
    2.6 The seed(s) in a random number generator 32
    2.7 Problems 32
    3 General methods for generating random variates 37
    3.1 Inversion of the cumulative distribution function 37
    3.2 Envelope rejection 40
    3.3 Ratio of uniforms method 44
    3.4 Adaptive rejection sampling 48
    3.5 Problems 52
    4 Generation of variates from standard distributions 59
    4.1 Standard normal distribution 59
    4.1.1 Box–Müller method 59
    4.1.2 An improved envelope rejection method 61
    4.2 Lognormal distribution 62
    viii Contents
    4.3 Bivariate normal density 63
    4.4 Gamma distribution 64
    4.4.1 Cheng’s log-logistic method 65
    4.5 Beta distribution 67
    4.5.1 Beta log-logistic method 67
    4.6 Chi-squared distribution 69
    4.7 Student’s t distribution 69
    4.8 Generalized inverse Gaussian distribution 71
    4.9 Poisson distribution 73
    4.10 Binomial distribution 74
    4.11 Negative binomial distribution 74
    4.12 Problems 75
    5 Variance reduction 79
    5.1 Antithetic variates 79
    5.2 Importance sampling 82
    5.2.1 Exceedance probabilities for sums of i.i.d. random variables 86
    5.3 Stratified sampling 89
    5.3.1 A stratification example 92
    5.3.2 Post stratification 96
    5.4 Control variates 98
    5.5 Conditional Monte Carlo 101
    5.6 Problems 103
    6 Simulation and finance 107
    6.1 Brownian motion 108
    6.2 Asset price movements 109
    6.3 Pricing simple derivatives and options 111
    6.3.1 European call 113
    6.3.2 European put 114
    6.3.3 Continuous income 115
    6.3.4 Delta hedging 115
    6.3.5 Discrete hedging 116
    6.4 Asian options 118
    6.4.1 Naive simulation 118
    6.4.2 Importance and stratified version 119
    6.5 Basket options 123
    6.6 Stochastic volatility 126
    6.7 Problems 130
    7 Discrete event simulation 135
    7.1 Poisson process 136
    7.2 Time-dependent Poisson process 140
    7.3 Poisson processes in the plane 141
    7.4 Markov chains 142
    7.4.1 Discrete-time Markov chains 142
    7.4.2 Continuous-time Markov chains 143
    Contents ix
    7.5 Regenerative analysis 144
    7.6 Simulating a G/G/1 queueing system using the three-phase method 146
    7.7 Simulating a hospital ward 149
    7.8 Problems 151
    8 Markov chain Monte Carlo 157
    8.1 Bayesian statistics 157
    8.2 Markov chains and the Metropolis–Hastings (MH) algorithm 159
    8.3 Reliability inference using an independence sampler 163
    8.4 Single component Metropolis–Hastings and Gibbs sampling 165
    8.4.1 Estimating multiple failure rates 167
    8.4.2 Capture–recapture 171
    8.4.3 Minimal repair 172
    8.5 Other aspects of Gibbs sampling 176
    8.5.1 Slice sampling 176
    8.5.2 Completions 178
    8.6 Problems 179
    9 Solutions 187
    9.1 Solutions 1 187
    9.2 Solutions 2 187
    9.3 Solutions 3 190
    9.4 Solutions 4 191
    9.5 Solutions 5 195
    9.6 Solutions 6 196
    9.7 Solutions 7 202
    9.8 Solutions 8 205
    Appendix 1: Solutions to problems in Chapter 1 209
    Appendix 2: Random number generators 227
    Appendix 3: Computations of acceptance probabilities 229
    Appendix 4: Random variate generators (standard distributions) 233
    Appendix 5: Variance reduction 239
    Appendix 6: Simulation and finance 249
    Appendix 7: Discrete event simulation 283
    Appendix 8: Markov chain Monte Carlo 299
    References 325
    Index 329

  • 二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    全部回复
    2007-11-27 10:30:00
    好书。
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2007-11-27 10:46:00
    不错,下来看看
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2007-11-27 14:50:00
    感谢
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2007-11-27 20:16:00
    可惜积分不够
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2007-11-28 08:50:00
    好好学习
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    点击查看更多内容…
    相关推荐
    栏目导航
    热门文章
    推荐文章

    说点什么

    分享

    扫码加好友,拉您进群
    各岗位、行业、专业交流群