全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
11509 38
2008-01-19

Linear Models in Statistics (Wiley Series in Probability and Statistics)
by Alvin C. Rencher (Author), G. Bruce Schaalje (Author)

  • Hardcover: 672 pages
  • Publisher: Wiley-Interscience; 2 edition (January 2, 2008)
  • Language: English
  • Review
    "Rencher...offers a textbook for a one-semester advanced undergraduate or beginning graduate course.... He includes more material than can actually squeeze into one semester...a good idea in statistics." (SciTech Book News, Vol. 24, No. 4, December 2000)

    "An excellent book. Highly recommended. Upper-division undergraduate and graduate students; professionals." (Choice, Vol. 38, No. 7, March 2001)

    "I would recommend the book to anyone as a reference book for the topics covered.... The book should also be a strong candidate for any M.S. course in linear models because of the numerous exercises with solutions and clear writing style." (Technometrics, Vol. 42, No. 4, May 2001)

    "Rencher's textbook is certainly of interest for students and instructors looking for a mathematical introduction to linear statistical models." (Statistics & Decisions, Volume 19, No 2, 2001)

    "...courses that go by the name "linear models" cover a combination of linear model theory, regression diagnostic, analysis of variance and more complex models that use linear models as a stepping stone. This book is appropriate for such courses...the collection of exercises adds to the book's value as a textbook." (Journal of the American Statistical Association, September 2001)

    "Gives a solid theoretical foundation to standard topics..." (American Mathematical Monthly, November 2001) --This text refers to the Hardcover edition.
      

    Choice, Vol. 38, No. 7, March 2001
    "An excellent book. Highly recommended. Upper-division undergraduate and graduate students; professionals." --This text refers to the Hardcover edition.
     
  • 189482.rar
    大小:(4.79 MB)

    只需: 36 个论坛币  马上下载

    本附件包括:

    • Linear Models in Statistics, 2nd Ed.pdf

  • CONTENTS
    Preface xiii
    1 Introduction 1
    1.1 Simple Linear Regression Model 1
    1.2 Multiple Linear Regression Model 2
    1.3 Analysis-of-Variance Models 3
    2 Matrix Algebra 5
    2.1 Matrix and Vector Notation 5
    2.1.1 Matrices, Vectors, and Scalars 5
    2.1.2 Matrix Equality 6
    2.1.3 Transpose 7
    2.1.4 Matrices of Special Form 7
    2.2 Operations 9
    2.2.1 Sum of Two Matrices or Two Vectors 9
    2.2.2 Product of a Scalar and a Matrix 10
    2.2.3 Product of Two Matrices or Two Vectors 10
    2.2.4 Hadamard Product of Two
    Matrices or Two Vectors 16
    2.3 Partitioned Matrices 16
    2.4 Rank 19
    2.5 Inverse 21
    2.6 Positive Definite Matrices 24
    2.7 Systems of Equations 28
    2.8 Generalized Inverse 32
    2.8.1 Definition and Properties 33
    2.8.2 Generalized Inverses and Systems of Equations 36
    2.9 Determinants 37
    2.10 Orthogonal Vectors and Matrices 41
    2.11 Trace 44
    2.12 Eigenvalues and Eigenvectors 46
    2.12.1 Definition 46
    2.12.2 Functions of a Matrix 49
    2.12.3 Products 50
    2.12.4 Symmetric Matrices 51
    2.12.5 Positive Definite and Semidefinite Matrices 53
    2.13 Idempotent Matrices 54
    2.14 Vector and Matrix Calculus 56
    2.14.1 Derivatives of Functions of Vectors and Matrices 56
    2.14.2 Derivatives Involving Inverse Matrices and Determinants 58
    2.14.3 Maximization or Minimization of a Function of a Vector 60
    3 Random Vectors and Matrices 69
    3.1 Introduction 69
    3.2 Means, Variances, Covariances, and Correlations 70
    3.3 Mean Vectors and Covariance Matrices for Random Vectors 75
    3.3.1 Mean Vectors 75
    3.3.2 Covariance Matrix 75
    3.3.3 Generalized Variance 77
    3.3.4 Standardized Distance 77
    3.4 Correlation Matrices 77
    3.5 Mean Vectors and Covariance Matrices for
    Partitioned Random Vectors 78
    3.6 Linear Functions of Random Vectors 79
    3.6.1 Means 80
    3.6.2 Variances and Covariances 81
    4 Multivariate Normal Distribution 87
    4.1 Univariate Normal Density Function 87
    4.2 Multivariate Normal Density Function 88
    4.3 Moment Generating Functions 90
    4.4 Properties of the Multivariate Normal Distribution 92
    4.5 Partial Correlation 100
    5 Distribution of Quadratic Forms in y 105
    5.1 Sums of Squares 105
    5.2 Mean and Variance of Quadratic Forms 107
    5.3 Noncentral Chi-Square Distribution 112
    5.4 Noncentral F and t Distributions 114
    5.4.1 Noncentral F Distribution 114
    5.4.2 Noncentral t Distribution 116
    5.5 Distribution of Quadratic Forms 117
    5.6 Independence of Linear Forms and Quadratic Forms 119
    6 Simple Linear Regression 127
    6.1 The Model 127
    6.2 Estimation of b0, b1, and s2 128
    6.3 Hypothesis Test and Confidence Interval for b1 132
    6.4 Coefficient of Determination 133
    7 Multiple Regression: Estimation 137
    7.1 Introduction 137
    7.2 The Model 137
    7.3 Estimation of b and s2 141
    7.3.1 Least-Squares Estimator for b 145
    7.3.2 Properties of the Least-Squares Estimator b ˆ 141
    7.3.3 An Estimator for s2 149
    7.4 Geometry of Least-Squares 151
    7.4.1 Parameter Space, Data Space, and Prediction Space 152
    7.4.2 Geometric Interpretation of the Multiple
    Linear Regression Model 153
    7.5 The Model in Centered Form 154
    7.6 Normal Model 157
    7.6.1 Assumptions 157
    7.6.2 Maximum Likelihood Estimators for b and s2 158
    7.6.3 Properties of b ˆ and sˆ 2 159
    7.7 R2 in Fixed-x Regression 161
    7.8 Generalized Least-Squares: cov(y) ¼ s2V 164
    7.8.1 Estimation of b and s2 when cov(y) ¼ s2V 164
    7.8.2 Misspecification of the Error Structure 167
    7.9 Model Misspecification 169
    7.10 Orthogonalization 174
    8 Multiple Regression: Tests of Hypotheses
    and Confidence Intervals 185
    8.1 Test of Overall Regression 185
    8.2 Test on a Subset of the b Values 189
    8.3 F Test in Terms of R2 196
    8.4 The General Linear Hypothesis Tests for H0:
    Cb ¼ 0 and H0: Cb ¼ t 198
    8.4.1 The Test for H0: Cb ¼ 0 198
    8.4.2 The Test for H0: Cb ¼ t 203
    8.5 Tests on bj and a0b 204
    8.5.1 Testing One bj or One a0b 204
    8.5.2 Testing Several bj or a0ib Values 205
    CONTENTS vii
    8.6 Confidence Intervals and Prediction Intervals 209
    8.6.1 Confidence Region for b 209
    8.6.2 Confidence Interval for bj 210
    8.6.3 Confidence Interval for a0b 211
    8.6.4 Confidence Interval for E(y) 211
    8.6.5 Prediction Interval for a Future Observation 213
    8.6.6 Confidence Interval for s2 215
    8.6.7 Simultaneous Intervals 215
    8.7 Likelihood Ratio Tests 217
    9 Multiple Regression: Model Validation and Diagnostics 227
    9.1 Residuals 227
    9.2 The Hat Matrix 230
    9.3 Outliers 232
    9.4 Influential Observations and Leverage 235
    10 Multiple Regression: Random x’s 243
    10.1 Multivariate Normal Regression Model 244
    10.2 Estimation and Testing in Multivariate Normal Regression 245
    10.3 Standardized Regression Coefficents 249
    10.4 R2 in Multivariate Normal Regression 254
    10.5 Tests and Confidence Intervals for R2 258
    10.6 Effect of Each Variable on R2 262
    10.7 Prediction for Multivariate Normal or Nonnormal Data 265
    10.8 Sample Partial Correlations 266
    11 Multiple Regression: Bayesian Inference 277
    11.1 Elements of Bayesian Statistical Inference 277
    11.2 A Bayesian Multiple Linear Regression Model 279
    11.2.1 A Bayesian Multiple Regression Model
    with a Conjugate Prior 280
    11.2.2 Marginal Posterior Density of b 282
    11.2.3 Marginal Posterior Densities of t and s2 284
    11.3 Inference in Bayesian Multiple Linear Regression 285
    11.3.1 Bayesian Point and Interval Estimates of
    Regression Coefficients 285
    11.3.2 Hypothesis Tests for Regression Coefficients
    in Bayesian Inference 286
    11.3.3 Special Cases of Inference in Bayesian Multiple
    Regression Models 286
    11.3.4 Bayesian Point and Interval Estimation of s2 287
    11.4 Bayesian Inference through Markov Chain
    Monte Carlo Simulation 288
    11.5 Posterior Predictive Inference 290
    12 Analysis-of-Variance Models 295
    12.1 Non-Full-Rank Models 295
    12.1.1 One-Way Model 295
    12.1.2 Two-Way Model 299
    12.2 Estimation 301
    12.2.1 Estimation of b 302
    12.2.2 Estimable Functions of b 305
    12.3 Estimators 309
    12.3.1 Estimators of l0b 309
    12.3.2 Estimation of s2 313
    12.3.3 Normal Model 314
    12.4 Geometry of Least-Squares in the
    Overparameterized Model 316
    12.5 Reparameterization 318
    12.6 Side Conditions 320
    12.7 Testing Hypotheses 323
    12.7.1 Testable Hypotheses 323
    12.7.2 Full-Reduced-Model Approach 324
    12.7.3 General Linear Hypothesis 326
    12.8 An Illustration of Estimation and Testing 329
    12.8.1 Estimable Functions 330
    12.8.2 Testing a Hypothesis 331
    12.8.3 Orthogonality of Columns of X 333
    13 One-Way Analysis-of-Variance: Balanced Case 339
    13.1 The One-Way Model 339
    13.2 Estimable Functions 340
    13.3 Estimation of Parameters 341
    13.3.1 Solving the Normal Equations 341
    13.3.2 An Estimator for s2 343
    13.4 Testing the Hypothesis H0: m1 ¼ m2 ¼ . . . ¼ mk 344
    13.4.1 Full–Reduced-Model Approach 344
    13.4.2 General Linear Hypothesis 348
    13.5 Expected Mean Squares 351
    13.5.1 Full-Reduced-Model Approach 352
    13.5.2 General Linear Hypothesis 354
    13.6 Contrasts 357
    13.6.1 Hypothesis Test for a Contrast 357
    13.6.2 Orthogonal Contrasts 358
    13.6.3 Orthogonal Polynomial Contrasts 363
    14 Two-Way Analysis-of-Variance: Balanced Case 377
    14.1 The Two-Way Model 377
    14.2 Estimable Functions 378
    14.3 Estimators of l0b and s2 382
    14.3.1 Solving the Normal Equations and Estimating l0b 382
    14.3.2 An Estimator for s2 384
    14.4 Testing Hypotheses 385
    14.4.1 Test for Interaction 385
    14.4.2 Tests for Main Effects 395
    14.5 Expected Mean Squares 403
    14.5.1 Sums-of-Squares Approach 403
    14.5.2 Quadratic Form Approach 405
    15 Analysis-of-Variance: The Cell Means Model for
    Unbalanced Data 413

    15.1 Introduction 413
    15.2 One-Way Model 415
    15.2.1 Estimation and Testing 415
    15.2.2 Contrasts 417
    15.3 Two-Way Model 421
    15.3.1 Unconstrained Model 421
    15.3.2 Constrained Model 428
    15.4 Two-Way Model with Empty Cells 432
    16 Analysis-of-Covariance 443
    16.1 Introduction 443
    16.2 Estimation and Testing 444
    16.2.1 The Analysis-of-Covariance Model 444
    16.2.2 Estimation 446
    16.2.3 Testing Hypotheses 448
    16.3 One-Way Model with One Covariate 449
    16.3.1 The Model 449
    16.3.2 Estimation 449
    16.3.3 Testing Hypotheses 450
    x CONTENTS
    16.4 Two-Way Model with One Covariate 457
    16.4.1 Tests for Main Effects and Interactions 458
    16.4.2 Test for Slope 462
    16.4.3 Test for Homogeneity of Slopes 463
    16.5 One-Way Model with Multiple Covariates 464
    16.5.1 The Model 464
    16.5.2 Estimation 465
    16.5.3 Testing Hypotheses 468
    16.6 Analysis-of-Covariance with Unbalanced Models 473
    17 Linear Mixed Models 479
    17.1 Introduction 479
    17.2 The Linear Mixed Model 479
    17.3 Examples 481
    17.4 Estimation of Variance Components 486
    17.5 Inference for b 490
    17.5.1 An Estimator for b 490
    17.5.2 Large-Sample Inference for Estimable Functions of b 491
    17.5.3 Small-Sample Inference for Estimable Functions of b 491
    17.6 Inference for the ai Terms 497
    17.7 Residual Diagnostics 501
    18 Additional Models 507
    18.1 Nonlinear Regression 507
    18.2 Logistic Regression 508
    18.3 Loglinear Models 511
    18.4 Poisson Regression 512
    18.5 Generalized Linear Models 513
    Appendix A Answers and Hints to the Problems 517
    References 653
    Index 663
  • [此贴子已经被作者于2008-1-19 22:30:40编辑过]

    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    全部回复
    2008-1-19 19:27:00

    好好,不错

    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2008-1-19 19:30:00

    好书。

    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2008-1-21 08:32:00
    看来不错,准备买下来看看
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2008-1-21 17:20:00
    It's good for me. Thanks!
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    2008-1-22 01:42:00
    太穷了,买不起
    二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    点击查看更多内容…
    相关推荐
    栏目导航
    热门文章
    推荐文章

    说点什么

    分享

    扫码加好友,拉您进群
    各岗位、行业、专业交流群