Jones模型分行业分年度的截面数据用statsby保存系数时有几个出现缺失值,但是当单独回归时是没有问题的
65. | P 2008 . . . . . . . |
|-------------------------------------------------------------------------------------------------|
66. | P 2009 . . . . . . . |
67. | P 2010 . . . . . . . |
68. | P 2011 . . . . . . . |
69. | Q 2009 . . . . . . . |
70. | Q 2010 . . . . . . . |
|-------------------------------------------------------------------------------------------------|
71. | Q 2011 . . . . . . . |
72. | R 2008 -8.38e+07 .2177303 .0301719 1.87e+07 .0261004 .0968178 .9882135 |
73. | R 2009 0 -.3918916 .188719 0 .2667421 .1767955 .5412533 |
单个回归
. reg gaa_w a_w reva_w ppea_w if g==66, noconstant
Source | SS df MS Number of obs = 59
-------------+------------------------------ F( 3, 56) = 18.25
Model | .214442505 3 .071480835 Prob > F = 0.0000
Residual | .219376708 56 .003917441 R-squared = 0.4943
-------------+------------------------------ Adj R-squared = 0.4672
Total | .433819214 59 .007352868 Root MSE = .06259
------------------------------------------------------------------------------
gaa_w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
a_w | 1.15e+07 2.18e+07 0.53 0.599 -3.21e+07 5.52e+07
reva_w | -.125439 .0305213 -4.11 0.000 -.1865805 -.0642975
ppea_w | -.0569351 .0182956 -3.11 0.003 -.0935857 -.0202845
------------------------------------------------------------------------------
另外使用过上述方法与使用下面个两种方法是不是等价的呢
方法2
reg y (industry#year)##c.x*
predict yp
predict e,r
*生成各回归的系数及其标准差、t值、p值,拟合优度r2:
statsby _b _se r2=e(r2) n=e(df_r),clear by(industry year): reg y x*
foreach v of var _b*{
loc s=substr("`v'",4,.)
g _t_`s'=`v'/_se_`s'
g _p_`s'=ttail(_eq2_n, abs(_t_`s'))*2
}
方法三使用forvalues 函数