C4.5 不知道,但是C5有相应的R软件包,名字叫C50。
同时在R的Task View上,有下面的描述:
Recursive Partitioning : Tree-structured models for regression, classification and survival analysis, following the ideas in the CART book, are implemented in rpart (shipped with base R) and tree. Package rpart is recommended for computing CART-like trees. A rich toolbox of partitioning algorithms is available in Weka , package RWeka provides an interface to this implementation, including the J4.8-variant of C4.5 and M5. The Cubist package fits rule-based models (similar to trees) with linear regression models in the terminal leaves, instance-based corrections and boosting. The C50 package can fit C5.0 classification trees, rule-based models, and boosted versions of these.
Two recursive partitioning algorithms with unbiased variable selection and statistical stopping criterion are implemented in package party. Function ctree() is based on non-parametrical conditional inference procedures for testing independence between response and each input variable whereas mob() can be used to partition parametric models. Extensible tools for visualizing binary trees and node distributions of the response are available in package party as well.
An adaptation of rpart for multivariate responses is available in package mvpart. For problems with binary input variables the package LogicReg implements logic regression. Graphical tools for the visualization of trees are available in package maptree.
Trees for modelling longitudinal data by means of random effects is offered by package REEMtree. Partitioning of mixture models is performed by RPMM.
Computational infrastructure for representing trees and unified methods for predition and visualization is implemented in partykit. This infrastructure is used by package evtree to implement evolutionary learning of globally optimal trees. Oblique trees are available in package oblique.tree.
http://cran.r-project.org/web/views/MachineLearning.html