全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 SPSS论坛
8088 4
2014-05-02
求助,我要做PLS分析,发现PEW软件很好用,但没正版的看不到全部,请问哪位有这个软件的正版,或者用其他软件详细说明怎么做也行,具体来说,有因变量Y ,自变量X2,X3,X4,X5,X6,X7,X8
要解决的问题PLS回归结果,VIP值和B值,还有PLS成分解释变差百分比的表,说明提取的几个成分来分析。如果有高手知道怎么做的,请联系我,我把相关数据表格发给您,谢谢,不胜感激。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-5-3 01:09:02
for Using SAS Pls Procedue,please read

http://www.ats.ucla.edu/stat/sas/library/pls.pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-5-3 01:13:02
If you elect r package pls,

http://cran.r-project.org/web/packages/pls/index.html

data(yarn)
## Default methods:
yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.pls <- plsr(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.cppls <- cppls(density ~ NIR, 6, data = yarn, validation = "CV")
## Alternative methods:
yarn.oscorespls <- mvr(density ~ NIR, 6, data = yarn, validation = "CV",
method = "oscorespls")
yarn.simpls <- mvr(density ~ NIR, 6, data = yarn, validation = "CV",
method = "simpls")
## Not run:
## Parallelised cross-validation, using transient cluster:
pls.options(parallel = 4) # use mclapply
pls.options(parallel = quote(makeCluster(4, type = "PSOCK"))) # use parLapply
## A new cluster is created and stopped for each cross-validation:
yarn.pls <- plsr(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV")
## Parallelised cross-validation, using persistent cluster:
library(parallel)
## This creates the cluster:
pls.options(parallel = makeCluster(4, type = "PSOCK"))
## The cluster can be used several times:
yarn.pls <- plsr(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV")
## The cluster should be stopped manually afterwards:
stopCluster(pls.options()$parallel)
## Parallelised cross-validation, using persistent MPI cluster:
## This requires the packages snow and Rmpi to be installed
library(parallel)
## This creates the cluster:
pls.options(parallel = makeCluster(4, type = "MPI"))
## The cluster can be used several times:
yarn.pls <- plsr(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV")
## The cluster should be stopped manually afterwards:
stopCluster(pls.options()$parallel)
## It is good practice to call mpi.exit() or mpi.quit() afterwards:
mpi.exit()
## End(Not run)
## Multi-response models:
data(oliveoil)
sens.pcr <- pcr(sensory ~ chemical, ncomp = 4, scale = TRUE, data = oliveoil)
sens.pls <- plsr(sensory ~ chemical, ncomp = 4, scale = TRUE, data = oliveoil)
## Classification
# A classification example utilizing additional response information
# (Y.add) is found in the cppls.fit manual (’See also’ above).
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-5-3 01:14:11
For SPSS,  http://pic.dhe.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fidh_idd_pls_variables.htm
Partial Least Squares Regression

The Partial Least Squares Regression procedure estimates partial least squares (PLS, also known as "projection to latent structure") regression models. PLS is a predictive technique that is an alternative to ordinary least squares (OLS) regression, canonical correlation, or structural equation modeling, and it is particularly useful when predictor variables are highly correlated or when the number of predictors exceeds the number of cases.

PLS combines features of principal components analysis and multiple regression. It first extracts a set of latent factors that explain as much of the covariance as possible between the independent and dependent variables. Then a regression step predicts values of the dependent variables using the decomposition of the independent variables.

Availability. PLS is an extension command that requires the IBM® SPSS® Statistics - Integration Plug-In for Python to be installed on the system where you plan to run PLS (see How to Get Integration Plug-Ins). The PLS Extension Module must be installed separately, and can be downloaded fromhttp://www.ibm.com/developerworks/spssdevcentral.

Tables. Proportion of variance explained (by latent factor), latent factor weights, latent factor loadings, independent variable importance in projection (VIP), and regression parameter estimates (by dependent variable) are all produced by default.

Charts. Variable importance in projection (VIP), factor scores, factor weights for the first three latent factors, and distance to the model are all produced from the Options tab.


[url=]Partial Least Squares Regression Data Considerations[/url]

[url=]To Obtain Partial Least Squares Regression[/url]

This procedure pastes PLS command syntax.

See PLS Algorithms for computational details for this procedure.

Related Topics[size=1em]Model (Partial Least Squares Regression)
[size=1em]Options (Partial Least Squares Regression)

[size=1em]PLS



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-5-3 14:35:31
全是英文的就没得中文的啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群