先认真阅读一些相关文献。面板数据集的截面纬度应大于时间纬度(N〉T)。估计后可从残差自相关检验(要求差分残差服从一阶负相关,无二阶和更高阶的相关)和sargen/hansen检验来检验工具变量的有效性,sargan是用于同方差,hansen检验更为一般可适用于异方差。gauss程序dpd98或stata程序xtabond2是估计GMM的现成程序,但gauss程序容易出错,还是xtabond2好用一些。
 xi: xtabond2 d.x dl(1/1).x  dl(1/1).y, gmm( x y, lag(2 8)c )
>   iv(i.year,equation(level)) noc  small robust h(1)
i.year            _Iyear_1980-2006    (naturally coded; _Iyear_1980 omitted)
Favoring space over speed. To switch, type or click on mata: mata set matafav
> or speed, perm.
Warning: Number of instruments may be large relative to number of observation
> s.
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate robust weighting matrix for Hansen
>  test.
  Difference-in-Sargan statistics may be negative.
 
Dynamic panel-data estimation, one-step system GMM
-----------------------------------------------------------------------------
> -
Group variable: id                              Number of obs      =       95
> 0
Time variable : year                            Number of groups   =        3
> 8
Number of instruments = 41                      Obs per group: min =        2
> 5
F(2, 38)      =    412.71                                      avg =     25.0
> 0
Prob > F      =     0.000                                      max =        2
> 5
-----------------------------------------------------------------------------
> -
             |               Robust
       D.x |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval
> ]
-------------+---------------------------------------------------------------
> -
         x |
         LD. |   .1555062   .0066141    23.51   0.000     .1421166    .168895
> 8
       y |
         LD. |    .034008   .0368939     0.92   0.362    -.0406797    .108695
> 8
-----------------------------------------------------------------------------
> -
Instruments for first differences equation
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L(2/8).(x y) collapsed
Instruments for levels equation
  Standard
    _Iyear_1981 _Iyear_1982 _Iyear_1983 _Iyear_1984 _Iyear_1985 _Iyear_1986
    _Iyear_1987 _Iyear_1988 _Iyear_1989 _Iyear_1990 _Iyear_1991 _Iyear_1992
    _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997 _Iyear_1998
    _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003 _Iyear_2004
    _Iyear_2005 _Iyear_2006
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    DL.(x y) collapsed
-----------------------------------------------------------------------------
> -
Arellano-Bond test for AR(1) in first differences: z =  -1.08  Pr > z =  0.28
> 1
Arellano-Bond test for AR(2) in first differences: z =   0.91  Pr > z =  0.36
> 1
-----------------------------------------------------------------------------
> -
Sargan test of overid. restrictions: chi2(39)   = 310.42  Prob > chi2 =  0.00
> 0
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(39)   =  37.82  Prob > chi2 =  0.52
> 4
  (Robust, but can be weakened by many instruments.)
 
Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(37)   =  37.64  Prob > chi2 =  0.44
> 0
    Difference (null H = exogenous): chi2(2)    =   0.18  Prob > chi2 =  0.91
> 2
  gmm(x y, collapse lag(2 8))
    Hansen test excluding group:     chi2(23)   =  22.73  Prob > chi2 =  0.47
> 6
    Difference (null H = exogenous): chi2(16)   =  15.09  Prob > chi2 =  0.51
> 8
  iv(_Iyear_1981 _Iyear_1982 _Iyear_1983 _Iyear_1984 _Iyear_1985 _Iyear_1986 
> _Iyear_1987 _Iyear_1988 _Iyear_1989 _Iyear_1990 _Iyear_1991 _Iyear_1992 _Iy
> ear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear
> _1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_20
> 05 _Iyear_2006, eq(level))
    Hansen test excluding group:     chi2(14)   =  17.87  Prob > chi2 =  0.21
> 3
    Difference (null H = exogenous): chi2(25)   =  19.95  Prob > chi2 =  0.74
> 9