全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1424 0
2014-06-16

I have a number of studies describing families tested for a genetic condition. For each study the following data are described:

  • np, number of probands (the proband is the first person in a family to be diagnosed with the genetic condition, so this is generally equal to the number of families)
  • nr, number of relatives identified (this is the total number of people identified across families minus the number of probands)
  • nc, number of relatives given genetic counseling
  • nt, number of relatives given genetic testing

Relatives must be identified before they can be given genetic counseling, and they must be given genetic counseling before they can be given genetic testing.

If I assume that nr~r×np, nc~pc×nr and nt~pt×nc how can I infer r, pc and pt given that some values of np, nr, nc and nt are missing (not reported)?



model {
  # Where all four variables are observed
  for (i in 1:N_PRCT) {
    # N_{r,i} | N_{p,i} = n_{p,i} ~ Poisson(r * n_{p,i})
    lam[Q_PRCT] <- r * N_p[Q_PRCT]
    N_r[Q_PRCT] ~ dpois(lam[Q_PRCT])
    # N_{c,i} | N_{r,i} = n_{r,i} ~ Bin(p_c, n_{r,i})
    N_c[Q_PRCT] ~ dbin(p_c, N_r[Q_PRCT])
    # N_{t,i} | N_{c,i} = n_{c,i} ~ Bin(p_t, n_{c,i})
    N_t[Q_PRCT] ~ dbin(p_t, N_c[Q_PRCT])
  }


  # Where the number being counseled is not observed
  for (i in 1:N_PRT) {
    # N_{r,i} | N_{p,i} = n_{p,i} ~ Poisson(r * n_{p,i})
    lam[Q_PRT] <- r * N_p[Q_PRT]
    N_r[Q_PRT] ~ dpois(lam[Q_PRT])
    # N_{t,i} | N_{r,i} = n_{r,i} ~ Bin(p_c * p_t, n_{r,i})
    N_t[Q_PRT] ~ dbin(p_cp_t, N_r[Q_PRT])
  }


  # Where only the number of probands and the number of
  # relatives tested are observed
  for (i in 1:N_PT) {
    # N_{t,i} | N_{p,i} = n_{p,i} ~ Poisson(r * p_c * p_t * n_{p,i})
    lam[Q_PT] <- rp_cp_t * N_p[Q_PT]
    N_t[Q_PT] ~ dpois(lam[Q_PT])
  }
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群