全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
2902 0
2008-04-29

209024.pdf
大小:(3.5 MB)

只需: 40 个论坛币  马上下载


金融经典,好东西,物有所值。

NeuralNetworks
inFinance:
Gaining
PredictiveEdge
intheMarket
PaulD.McNelis

Contents
Prefacexi
1Introduction1
1.1Forecasting,Classi?cation,andDimensionality
Reduction ..........................1
1.2Synergies ...........................4
1.3TheInterfaceProblems ...................6
1.4PlanoftheBook ......................8
IEconometricFoundations11
2WhatAreNeuralNetworks?13
2.1LinearRegressionModel ..................13
2.2GARCHNonlinearModels .................15
2.2.1PolynomialApproximation .............17
2.2.2OrthogonalPolynomials ...............18
2.3ModelTypology .......................20
2.4WhatIsANeuralNetwork? ................21
2.4.1FeedforwardNetworks ................21
2.4.2SquasherFunctions .................24
2.4.3RadialBasisFunctions ...............28
2.4.4RidgeletNetworks ..................29
2.4.5JumpConnections ..................30
2.4.6MultilayeredFeedforwardNetworks ........32

2.4.7RecurrentNetworks .................34
2.4.8NetworkswithMultipleOutputs ..........36
2.5NeuralNetworkSmooth-TransitionRegimeSwitching
Models ............................38
2.5.1Smooth-TransitionRegimeSwitchingModels...38
2.5.2NeuralNetworkExtensions .............39
2.6NonlinearPrincipalComponents:Intrinsic
Dimensionality ........................41
2.6.1LinearPrincipalComponents ............42
2.6.2NonlinearPrincipalComponents ..........44
2.6.3ApplicationtoAssetPricing ............46
2.7NeuralNetworksandDiscreteChoice ...........49
2.7.1DiscriminantAnalysis ................49
2.7.2LogitRegression ...................50
2.7.3ProbitRegression ..................51
2.7.4WeibullRegression .................52
2.7.5NeuralNetworkModelsforDiscreteChoice ....52
2.7.6ModelswithMultinomialOrderedChoice .....53
2.8TheBlackBoxCriticismandDataMining ........55
2.9Conclusion ..........................57
2.9.1MATLABProgramNotes ..............58
2.9.2SuggestedExercises .................58
3EstimationofaNetworkwithEvolutionaryComputation59
3.1DataPreprocessing .....................59
3.1.1Stationarity:Dickey-FullerTest ...........59
3.1.2SeasonalAdjustment:CorrectionforCalendar
E?ects ........................61
3.1.3DataScaling .....................64
3.2TheNonlinearEstimationProblem ............65
3.2.1LocalGradient-BasedSearch:TheQuasi-Newton
MethodandBackpropagation ...........67
3.2.2StochasticSearch:SimulatedAnnealing ......70
3.2.3EvolutionaryStochasticSearch:TheGenetic
Algorithm ......................72
3.2.4EvolutionaryGeneticAlgorithms ..........75
3.2.5Hybridization:CouplingGradient-Descent,
Stochastic,andGeneticSearchMethods ......75
3.3RepeatedEstimationandThickModels ..........77
3.4MATLABExamples:NumericalOptimizationand
NetworkPerformance ....................78
3.4.1NumericalOptimization ...............78
3.4.2ApproximationwithPolynomialsand
NeuralNetworks ...................80

Contentsvii
3.5Conclusion ..........................83
3.5.1MATLABProgramNotes ..............83
3.5.2SuggestedExercises .................84
4EvaluationofNetworkEstimation85
4.1In-SampleCriteria ......................85
4.1.1GoodnessofFitMeasure ..............86
4.1.2Hannan-QuinnInformationCriterion .......86
4.1.3SerialIndependence:Ljung-BoxandMcLeod-Li
Tests .........................86
4.1.4Symmetry ......................89
4.1.5Normality ......................89
4.1.6NeuralNetworkTestforNeglectedNonlinearity:
Lee-White-GrangerTest ..............90
4.1.7Brock-Deckert-ScheinkmanTestforNonlinear
Patterns .......................91
4.1.8SummaryofIn-SampleCriteria ...........93
4.1.9MATLABExample .................93
4.2Out-of-SampleCriteria ...................94
4.2.1RecursiveMethodology ...............95
4.2.2RootMeanSquaredErrorStatistic .........96
4.2.3Diebold-MarianoTestforOut-of-SampleErrors..96
4.2.4Harvey,Leybourne,andNewboldSizeCorrection
ofDiebold-MarianoTest ..............97
4.2.5Out-of-SampleComparisonwithNestedModels..98
4.2.6SuccessRatioforSignPredictions:Directional
Accuracy .......................99
4.2.7PredictiveStochasticComplexity ..........100
4.2.8Cross-Validationandthe.632Bootstrapping
Method ........................101
4.2.9DataRequirements:HowLargeforPredictive
Accuracy? ......................102
4.3InterpretiveCriteriaandSigni?canceofResults ......104
4.3.1AnalyticDerivatives .................105
4.3.2FiniteDi?erences ..................106
4.3.3DoesItMatter? ...................107
4.3.4MATLABExample:AnalyticandFinite
Di?erences ......................107
4.3.5BootstrappingforAssessingSigni?cance ......108
4.4ImplementationStrategy ..................109
4.5Conclusion ..........................110
4.5.1MATLABProgramNotes ..............110
4.5.2SuggestedExercises .................111

viiiContents
IIApplicationsandExamples113
5EstimatingandForecastingwithArti?cialData115
5.1Introduction .........................115
5.2StochasticChaosModel ...................117
5.2.1In-SamplePerformance ...............118
5.2.2Out-of-SamplePerformance .............120
5.3StochasticVolatility/JumpDi?usionModel ........122
5.3.1In-SamplePerformance ...............123
5.3.2Out-of-SamplePerformance .............125
5.4TheMarkovRegimeSwitchingModel ...........125
5.4.1In-SamplePerformance ...............128
5.4.2Out-of-SamplePerformance .............130
5.5VolatalityRegimeSwitchingModel ............130
5.5.1In-SamplePerformance ...............132
5.5.2Out-of-SamplePerformance .............132
5.6DistortedLong-MemoryModel ...............135
5.6.1In-SamplePerformance ...............136
5.6.2Out-of-SamplePerformance .............137
5.7Black-SholesOptionPricingModel:ImpliedVolatility
Forecasting ..........................137
5.7.1In-SamplePerformance ...............140
5.7.2Out-of-SamplePerformance .............142
5.8Conclusion ..........................142
5.8.1MATLABProgramNotes ..............142
5.8.2SuggestedExercises .................143
6TimesSeries:ExamplesfromIndustryandFinance145
6.1ForecastingProductionintheAutomotiveIndustry...145
6.1.1TheData .......................146
6.1.2ModelsofQuantityAdjustment ..........148
6.1.3In-SamplePerformance ...............150
6.1.4Out-of-SamplePerformance .............151
6.1.5InterpretationofResults ..............152
6.2CorporateBonds:WhichFactorsDeterminethe
Spreads? ...........................156
6.2.1TheData .......................157
6.2.2AModelfortheAdjustmentofSpreads ......157
6.2.3In-SamplePerformance ...............160
6.2.4Out-of-SamplePerformance .............160
6.2.5InterpretationofResults ..............161

Contentsix
6.3Conclusion ..........................165
6.3.1MATLABProgramNotes ..............166
6.3.2SuggestedExercises .................166
7In?ationandDe?ation:HongKongandJapan167
7.1HongKong ..........................168
7.1.1TheData .......................169
7.1.2ModelSpeci?cation .................174
7.1.3In-SamplePerformance ...............177
7.1.4Out-of-SamplePerformance .............177
7.1.5InterpretationofResults ..............178
7.2Japan ............................182
7.2.1TheData .......................184
7.2.2ModelSpeci?cation .................189
7.2.3In-SamplePerformance ...............189
7.2.4Out-of-SamplePerformance .............190
7.2.5InterpretationofResults ..............191
7.3Conclusion ..........................196
7.3.1MATLABProgramNotes ..............196
7.3.2SuggestedExercises .................196
8Classi?cation:CreditCardDefaultandBankFailures199
8.1CreditCardRisk ......................200
8.1.1TheData .......................200
8.1.2In-SamplePerformance ...............200
8.1.3Out-of-SamplePerformance .............202
8.1.4InterpretationofResults ..............203
8.2BankingIntervention ....................204
8.2.1TheData .......................204
8.2.2In-SamplePerformance ...............205
8.2.3Out-of-SamplePerformance .............207
8.2.4InterpretationofResults ..............208
8.3Conclusion ..........................209
8.3.1MATLABProgramNotes ..............210
8.3.2SuggestedExercises .................210
9DimensionalityReductionandImpliedVolatility
Forecasting211
9.1HongKong ..........................212
9.1.1TheData .......................212
9.1.2In-SamplePerformance ...............213
9.1.3Out-of-SamplePerformance .............214

xContents
9.2UnitedStates ........................216
9.2.1TheData .......................216
9.2.2In-SamplePerformance ...............216
9.2.3Out-of-SamplePerformance .............218
9.3Conclusion ..........................219
9.3.1MATLABProgramNotes ..............220
9.3.2SuggestedExercises .................220
Bibliography221
Index233

[此贴子已经被作者于2008-5-1 8:09:08编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群