全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
16005 45
2008-04-30
<p>Bootstrap 方法经典著作</p><p>Chernick 著</p><p>388页 英文版 非影印、清晰版</p><p>Contents<br/>Preface to Second Edition  ix<br/>Preface to First Edition  xiii<br/>Acknowledgments xvii<br/>1. What Is Bootstrapping? 1<br/> 1.1. Background, 1<br/> 1.2. Introduction, 8<br/>  1.3.  Wide Range of Applications,  13<br/> 1.4. Historical Notes, 16<br/> 1.5. Summary, 24<br/>2. Estimation 26<br/> 2.1. Estimating Bias, 26<br/>    2.1.1.  How to Do It by Bootstrapping,  26<br/>    2.1.2.  Error Rate Estimation in Discrimination,  28<br/>    2.1.3.  Error Rate Estimation: An Illustrative Problem,  39<br/>    2.1.4.  Efron’s Patch Data Example,  44<br/>  2.2.  Estimating Location and Dispersion,  46<br/>   2.2.1. Means and Medians, 47<br/>    2.2.2.  Standard Errors and Quartiles,  48<br/> 2.3. Historical Notes, 51<br/>3. Confi  dence Sets and Hypothesis Testing 53<br/> 3.1. Confi  dence Sets,  55<br/>    3.1.1.  Typical Value Theorems for M-Estimates,  55<br/>   3.1.2. Percentile Method, 57vi contents<br/>    3.1.3.  Bias Correction and the Acceleration Constant,  58<br/>   3.1.4. Iterated Bootstrap, 61<br/>   3.1.5. Bootstrap Percentile t Confi  dence Intervals,  64<br/>  3.2.   Relationship Between Confi  dence Intervals and Tests of <br/>Hypotheses, 64<br/> 3.3. Hypothesis Testing Problems, 66<br/>    3.3.1.  Tendril DX Lead Clinical Trial Analysis,  67<br/>  3.4.   An Application of Bootstrap Confi  dence Intervals to Binary <br/>Dose–Response Modeling,  71<br/> 3.5.  Historical Notes, 75<br/>4. Regression Analysis 78<br/> 4.1.  Linear Models, 82<br/>   4.1.1.  Gauss–Markov Theory, 83<br/>    4.1.2.   Why Not Just Use Least Squares?  83<br/>    4.1.3.   Should I Bootstrap the Residuals from the Fit?  84<br/> 4.2.  Nonlinear Models, 86<br/>    4.2.1.   Examples of Nonlinear Models,  87<br/>    4.2.2.   A Quasi-optical Experiment,  89<br/> 4.3.  Nonparametric Models, 93<br/> 4.4.  Historical Notes, 94<br/>5. Forecasting and Time Series Analysis 97<br/>  5.1.   Methods of Forecasting,  97<br/>  5.2.   Time Series Models,  98<br/>  5.3.   When Does Bootstrapping Help with Prediction Intervals?  99<br/>  5.4.   Model-Based Versus Block Resampling,  103<br/>  5.5.   Explosive Autoregressive Processes,  107<br/>  5.6.   Bootstrapping-Stationary Arma Models,  108<br/> 5.7.  Frequency-Based Approaches, 108<br/> 5.8.  Sieve Bootstrap, 110<br/> 5.9.  Historical Notes, 111<br/>6. Which Resampling Method Should You Use? 114<br/> 6.1.  Related Methods, 115<br/>   6.1.1.  Jackknife, 115<br/>    6.1.2.   Delta Method, Infi  nitesimal Jackknife, and Infl  uence <br/>Functions, 116<br/>   6.1.3.  Cross-Validation, 119<br/>   6.1.4.  Subsampling, 119contents vii<br/> 6.2.  Bootstrap Variants, 120<br/>   6.2.1.  Bayesian Bootstrap, 121<br/>    6.2.2.   The Smoothed Boostrap,  123<br/>    6.2.3.   The Parametric Bootstrap,  124<br/>   6.2.4.  Double Bootstrap, 125<br/>    6.2.5.   The m-out-of-n Bootstrap,  125<br/>7. Effi  cient and Effective Simulation 127<br/>  7.1.   How Many Replications?  128<br/>  7.2.   Variance Reduction Methods,  129<br/>   7.2.1.  Linear Approximation, 129<br/>   7.2.2.  Balanced Resampling, 131<br/>   7.2.3.  Antithetic Variates, 132<br/>   7.2.4.  Importance Sampling, 133<br/>   7.2.5.  Centering, 134<br/>  7.3.   When Can Monte Carlo Be Avoided?  135<br/> 7.4.  Historical Notes, 136<br/>8. Special Topics 1 3 9<br/> 8.1.  Spatial Data, 139<br/>   8.1.1.  Kriging, 139<br/>    8.1.2.   Block Bootstrap on Regular Grids,  142<br/>    8.1.3.   Block Bootstrap on Irregular Grids,  143<br/> 8.2.  Subset Selection, 143<br/>  8.3.   Determining the Number of Distributions in a Mixture <br/>Model, 145<br/> 8.4.  Censored Data, 148<br/> 8.5.   p-Value Adjustment,  149<br/>    8.5.1.   Description of Westfall–Young Approach,  150<br/>    8.5.2.   Passive Plus DX Example,  150<br/>   8.5.3.  Consulting Example, 152<br/> 8.6.  Bioequivalence Applications, 153<br/>   8.6.1.  Individual Bioequivalence, 153<br/>   8.6.2.  Population Bioequivalence, 155<br/>  8.7.   Process Capability Indices,  156<br/> 8.8.  Missing Data, 164<br/> 8.9.  Point Processes, 166<br/> 8.10.  Lattice Variables, 168<br/> 8.11.  Historical Notes, 169viii contents<br/>9. When Bootstrapping Fails Along with Remedies for Failures 172<br/>  9.1.   Too Small of a Sample Size,  173<br/>  9.2.   Distributions with Infi  nite Moments,  175<br/>   9.2.1.  Introduction, 175<br/>    9.2.2.   Example of Inconsistency,  176<br/>   9.2.3.  Remedies, 176<br/>  9.3.   Estimating Extreme Values,  177<br/>   9.3.1.  Introduction, 177<br/>   9.3.2. Example of Inconsistency, 177<br/>   9.3.3. Remedies, 178<br/> 9.4.  Survey Sampling, 179<br/>   9.4.1.  Introduction, 179<br/>   9.4.2. Example of Inconsistency, 180<br/>   9.4.3. Remedies, 180<br/>  9.5.   Data Sequences that Are M-Dependent, 180<br/>   9.5.1.  Introduction, 180<br/>   9.5.2.   Example of Inconsistency When Independence Is <br/>Assumed, 181<br/>   9.5.3. Remedies, 181<br/>  9.6.   Unstable Autoregressive Processes,  182<br/>   9.6.1.  Introduction, 182<br/>    9.6.2.   Example of Inconsistency,  182<br/>   9.6.3.  Remedies, 183<br/> 9.7.  Long-Range Dependence, 183<br/>   9.7.1.  Introduction, 183<br/>    9.7.2.   Example of Inconsistency,  183<br/>   9.7.3.  Remedies, 184<br/> 9.8.  Bootstrap Diagnostics, 184<br/> 9.9.  Historical Notes, 185<br/>Bibliography 1 (Prior to 1999) 188<br/>Bibliography 2 (1999–2007) 274<br/>Author Index 330<br/>Subject Index </p><p>
209453.pdf
大小:(4.9 MB)

只需: 7 个论坛币  马上下载

</p><br/>

[此贴子已经被作者于2008-5-1 0:02:51编辑过]

<br>mathtao
 金钱 +100
 奖励 2009-1-18 1:00:38
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2008-5-1 00:06:00

Bootstrap 方法经典著作

Chernick 著

388页 英文版 非影印、清晰版

Contents
Preface to Second Edition  ix
Preface to First Edition  xiii
Acknowledgments xvii
1. What Is Bootstrapping? 1
 1.1. Background, 1
 1.2. Introduction, 8
  1.3.  Wide Range of Applications,  13
 1.4. Historical Notes, 16
 1.5. Summary, 24
2. Estimation 26
 2.1. Estimating Bias, 26
    2.1.1.  How to Do It by Bootstrapping,  26
    2.1.2.  Error Rate Estimation in Discrimination,  28
    2.1.3.  Error Rate Estimation: An Illustrative Problem,  39
    2.1.4.  Efron’s Patch Data Example,  44
  2.2.  Estimating Location and Dispersion,  46
   2.2.1. Means and Medians, 47
    2.2.2.  Standard Errors and Quartiles,  48
 2.3. Historical Notes, 51
3. Confi  dence Sets and Hypothesis Testing 53
 3.1. Confi  dence Sets,  55
    3.1.1.  Typical Value Theorems for M-Estimates,  55
   3.1.2. Percentile Method, 57vi contents
    3.1.3.  Bias Correction and the Acceleration Constant,  58
   3.1.4. Iterated Bootstrap, 61
   3.1.5. Bootstrap Percentile t Confi  dence Intervals,  64
  3.2.   Relationship Between Confi  dence Intervals and Tests of
Hypotheses, 64
 3.3. Hypothesis Testing Problems, 66
    3.3.1.  Tendril DX Lead Clinical Trial Analysis,  67
  3.4.   An Application of Bootstrap Confi  dence Intervals to Binary
Dose–Response Modeling,  71
 3.5.  Historical Notes, 75
4. Regression Analysis 78
 4.1.  Linear Models, 82
   4.1.1.  Gauss–Markov Theory, 83
    4.1.2.   Why Not Just Use Least Squares?  83
    4.1.3.   Should I Bootstrap the Residuals from the Fit?  84
 4.2.  Nonlinear Models, 86
    4.2.1.   Examples of Nonlinear Models,  87
    4.2.2.   A Quasi-optical Experiment,  89
 4.3.  Nonparametric Models, 93
 4.4.  Historical Notes, 94
5. Forecasting and Time Series Analysis 97
  5.1.   Methods of Forecasting,  97
  5.2.   Time Series Models,  98
  5.3.   When Does Bootstrapping Help with Prediction Intervals?  99
  5.4.   Model-Based Versus Block Resampling,  103
  5.5.   Explosive Autoregressive Processes,  107
  5.6.   Bootstrapping-Stationary Arma Models,  108
 5.7.  Frequency-Based Approaches, 108
 5.8.  Sieve Bootstrap, 110
 5.9.  Historical Notes, 111
6. Which Resampling Method Should You Use? 114
 6.1.  Related Methods, 115
   6.1.1.  Jackknife, 115
    6.1.2.   Delta Method, Infi  nitesimal Jackknife, and Infl  uence
Functions, 116
   6.1.3.  Cross-Validation, 119
   6.1.4.  Subsampling, 119contents vii
 6.2.  Bootstrap Variants, 120
   6.2.1.  Bayesian Bootstrap, 121
    6.2.2.   The Smoothed Boostrap,  123
    6.2.3.   The Parametric Bootstrap,  124
   6.2.4.  Double Bootstrap, 125
    6.2.5.   The m-out-of-n Bootstrap,  125
7. Effi  cient and Effective Simulation 127
  7.1.   How Many Replications?  128
  7.2.   Variance Reduction Methods,  129
   7.2.1.  Linear Approximation, 129
   7.2.2.  Balanced Resampling, 131
   7.2.3.  Antithetic Variates, 132
   7.2.4.  Importance Sampling, 133
   7.2.5.  Centering, 134
  7.3.   When Can Monte Carlo Be Avoided?  135
 7.4.  Historical Notes, 136
8. Special Topics 1 3 9
 8.1.  Spatial Data, 139
   8.1.1.  Kriging, 139
    8.1.2.   Block Bootstrap on Regular Grids,  142
    8.1.3.   Block Bootstrap on Irregular Grids,  143
 8.2.  Subset Selection, 143
  8.3.   Determining the Number of Distributions in a Mixture
Model, 145
 8.4.  Censored Data, 148
 8.5.   p-Value Adjustment,  149
    8.5.1.   Description of Westfall–Young Approach,  150
    8.5.2.   Passive Plus DX Example,  150
   8.5.3.  Consulting Example, 152
 8.6.  Bioequivalence Applications, 153
   8.6.1.  Individual Bioequivalence, 153
   8.6.2.  Population Bioequivalence, 155
  8.7.   Process Capability Indices,  156
 8.8.  Missing Data, 164
 8.9.  Point Processes, 166
 8.10.  Lattice Variables, 168
 8.11.  Historical Notes, 169viii contents
9. When Bootstrapping Fails Along with Remedies for Failures 172
  9.1.   Too Small of a Sample Size,  173
  9.2.   Distributions with Infi  nite Moments,  175
   9.2.1.  Introduction, 175
    9.2.2.   Example of Inconsistency,  176
   9.2.3.  Remedies, 176
  9.3.   Estimating Extreme Values,  177
   9.3.1.  Introduction, 177
   9.3.2. Example of Inconsistency, 177
   9.3.3. Remedies, 178
 9.4.  Survey Sampling, 179
   9.4.1.  Introduction, 179
   9.4.2. Example of Inconsistency, 180
   9.4.3. Remedies, 180
  9.5.   Data Sequences that Are M-Dependent, 180
   9.5.1.  Introduction, 180
   9.5.2.   Example of Inconsistency When Independence Is
Assumed, 181
   9.5.3. Remedies, 181
  9.6.   Unstable Autoregressive Processes,  182
   9.6.1.  Introduction, 182
    9.6.2.   Example of Inconsistency,  182
   9.6.3.  Remedies, 183
 9.7.  Long-Range Dependence, 183
   9.7.1.  Introduction, 183
    9.7.2.   Example of Inconsistency,  183
   9.7.3.  Remedies, 184
 9.8.  Bootstrap Diagnostics, 184
 9.9.  Historical Notes, 185
Bibliography 1 (Prior to 1999) 188
Bibliography 2 (1999–2007) 274
Author Index 330
Subject Index

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-5-1 00:06:00

Bootstrap 方法经典著作

[此贴子已经被作者于2008-5-1 0:07:33编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-5-1 00:18:00
好书,一定得顶~~~谢谢楼主
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-6-7 01:12:00
碰到好书,一定要顶啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-6-7 09:11:00

很好的书,楼主的目录很详细!赞

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群