自然对数:e
注:第三个是开n次方根,但是这里显示不支持!
\[级数形式:e=\sum_{k=0}^\infty \frac{1}{n!},极限形式:e=\lim_{n \to \infty}(1+\frac{1}{n})^n,极限形式:e=\lim_{n \to \infty}\frac{n}{\sqrt{n!}}\]
\[\int_{0}^{+\infty} e^{-x}\, dx=1\]
\[\begin{alignat} {1} e^{ix} & = 1+ix+\frac{(ix)^2}{2!}+\frac{(ix)^3}{3!}+\frac{(ix)^4}{4!}+\frac{(ix)^5}{5!}+\frac{(ix)^6}{6!}+...\\ & =1+ix-\frac{x^2}{2!}-\frac{ix^3}{3!}+\frac{x^4}{4!}+\frac{ix^5}{5!}-\frac{x^6}{6!}...\\ & =1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...+ix-\frac{ix^3}{3!}+\frac{ix^5}{5!}-...\\ & =\cos(x)+i\sin(x) \\ \end{alignat}\]
---------------------------------------------------------------------------------------------------------------------------------------------------------
欧拉积分:\[\Gamma(s)=\int_{0}^{+\infty} x^{s-1} e^{-x}\, dx,s >0,\Gamma(r)=(r-1)!\]
---------------------------------------------------------------------------------------------------------------------------------------------------------
傅里叶变换:\[f(t)=\int_{-\infty}^{+\infty} e^{itx} p(x)\, dx,称对p(x)做了傅里叶变换\]
---------------------------------------------------------------------------------------------------------------------------------------------------------
三角公式:\[\sin 2\theta=2 \sin \theta \cos \theta , \cos 2 \theta=\cos^2 \theta-\sin^2 \theta\]
---------------------------------------------------------------------------------------------------------------------------------------------------------
反三角函数求导:\[(\acrtan x)^\prime=\frac{1}{1+x^2}\]