感觉很难在论坛上说清楚,仅有第一个函数(即方程5)与m有关,所以可以不用直接转化到方程(7)。
通过方程(5)得到的均值为μ/θ,方差为μ/(θ^2),则有
∫m^2·gm(m;μ,θ)·dm = D(gm)+E(gm)^2 =μ(μ+1)/(θ^2)························(方程8);
那么对于方程(7)的期望值可以用E(P) = ∫∫m·P(m;μ,v,φ,θ)·dm·dθ = ∫(∫m·gm(m;μ,θ)·dm)·gθ(θ;v,φ)·dθ 得到E(P) = ∫(μ/θ)·gθ(θ;v,φ)·dθ = μ·∫(φ^2/(v-1)(v-2))·θ·gθ(θ;v-2,φ)·dθ = μ·φ/(v-1). 即方程(7)的数学期望为E(P)=μ·φ/(v-1). 而D(P) = ∫∫(P-E(P))^2·dm·dθ = E(P^2)-(E(P))^2 = ∫∫m^2·P(m;μ,v,φ,θ)·dm·dθ-(μ·φ/(v-1))^2 = ∫(∫m^2·gm(m;μ,θ)·dm)·gθ(θ;v,φ)·dθ-(μ·φ/(v-1))^2 =(根据方程8)= ∫μ(μ+1)/(θ^2)·gθ(θ;v,φ)·dθ-(μ·φ/(v-1))^2 = ∫μ(μ+1)·(φ^3/(v-1)(v-2)(v-3))·θ·gθ(θ;v-3,φ)·dθ-(μ·φ/(v-1))^2 = μ(μ+1)·(φ^2/(v-1)(v-2))-(μ·φ/(v-1))^2 = μ·(φ^2)·(μ+v-1)/((v-1)^2)(v-2),即D(P)=μ·(φ^2)·(μ+v-1)/((v-1)^2)(v-2).
上述仅仅是个人的计算方法,不知是否理解有误,请指教。