假设e_t为一个随机变量,t为时间,e服从标准正态分布, i.i.d.
那么e的一阶差分y_t = e_t - e_t-1 应该是一个ar(1)过程,而且不会出现高于一阶的自相关。
但是,如果用实际数据进行检验,发现情况不是如此,难道统计理论有问题????
下面给出stata做的例子。e的样本数设定为500,回归方法为OLS
Source | SS df MS Number of obs = 469
-------------+------------------------------ F( 30, 439) = 15.62
Model | 470.354304 30 15.6784768 Prob > F = 0.0000
Residual | 440.648414 439 1.00375493 R-squared = 0.5163
-------------+------------------------------ Adj R-squared = 0.4832
Total | 911.002718 469 1.9424365 Root MSE = 1.0019
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
y |
L1. | -.9864871 .0477402 -20.66 0.000 -1.080315 -.8926593
L2. | -.8700358 .0669731 -12.99 0.000 -1.001663 -.738408
L3. | -.7817588 .078575 -9.95 0.000 -.9361888 -.6273289
L4. | -.7384257 .0865835 -8.53 0.000 -.9085953 -.5682561
L5. | -.6901355 .0929979 -7.42 0.000 -.872912 -.507359
L6. | -.6820232 .0976573 -6.98 0.000 -.8739571 -.4900893
L7. | -.6609099 .1013709 -6.52 0.000 -.8601425 -.4616773
L8. | -.698303 .104973 -6.65 0.000 -.9046151 -.4919909
L9. | -.7295247 .1090347 -6.69 0.000 -.9438196 -.5152299
L10. | -.6367738 .1132568 -5.62 0.000 -.8593667 -.4141809
L11. | -.5964108 .1156377 -5.16 0.000 -.8236831 -.3691386
L12. | -.5145375 .1171765 -4.39 0.000 -.7448341 -.2842408
L13. | -.5029971 .117669 -4.27 0.000 -.7342617 -.2717326
L14. | -.5229434 .1183358 -4.42 0.000 -.7555184 -.2903683
L15. | -.5153343 .1183815 -4.35 0.000 -.7479993 -.2826694
L16. | -.4728295 .118094 -4.00 0.000 -.7049294 -.2407296
L17. | -.419629 .1170571 -3.58 0.000 -.6496909 -.189567
L18. | -.4851017 .1158677 -4.19 0.000 -.7128261 -.2573773
L19. | -.4643208 .1156869 -4.01 0.000 -.6916898 -.2369519
L20. | -.4074904 .1147405 -3.55 0.000 -.6329994 -.1819813
L21. | -.2986239 .1125604 -2.65 0.008 -.5198482 -.0773997
L22. | -.2634067 .10839 -2.43 0.015 -.4764346 -.0503788
L23. | -.2501083 .1044793 -2.39 0.017 -.45545 -.0447665
L24. | -.25754 .1004789 -2.56 0.011 -.4550194 -.0600605
L25. | -.2653077 .0959387 -2.77 0.006 -.4538639 -.0767515
L26. | -.1845357 .0913365 -2.02 0.044 -.364047 -.0050245
L27. | -.1423228 .0848563 -1.68 0.094 -.3090979 .0244523 //到这里才开始不显著(5%)
L28. | -.0648114 .0767048 -0.84 0.399 -.2155657 .0859429
L29. | -.0514357 .064822 -0.79 0.428 -.1788356 .0759642
L30. | -.0159031 .0462497 -0.34 0.731 -.1068015 .0749953
------------------------------------------------------------------------------
在1%的显著水平上,也有AR(21),为什么会这样?请各位大侠讨论讨论。
[此贴子已经被作者于2008-8-15 22:02:46编辑过]