全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
7927 2
2015-03-08
如题,看论坛里有矛盾的说法,一个是xtscc适用于t大于n的,这个在stata手册里也说了,还有人说xtscc适用于n大于t的。xtgls论坛中说适合随机效应。在消除异方差上面应该用xtscc还是xtgls呢?毕竟其中还牵扯到fe和re哪个有效上
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-3-31 23:18:40
同求,这个问题困扰我好久了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-9-23 10:19:14
xtscc produces Driscoll and Kraay (1998) standard errors for coefficients
    estimated by pooled OLS/WLS or fixed-effects (within) regression. depvar
    is the dependent variable and varlist is an (optional) list of explanatory
    variables.

    The error structure is assumed to be heteroskedastic, autocorrelated up to
    some lag, and possibly correlated between the groups (panels).
    Driscoll-Kraay standard errors are robust to very general forms of
    cross-sectional ("spatial") and temporal dependence when the time
    dimension becomes large. This nonparametric technique of estimating
    standard errors does not place any restrictions on the limiting behavior
    of the number of panels. Consequently, the size of the cross-sectional
    dimension in finite samples does not constitute a constraint on
    feasibility - even if the number of panels is much larger than T. However,
    note that the estimator is based on large T asymptotics. Therefore, one
    should be somewhat cautious with applying this estimator to panel datasets
    with a large number of groups but a small number of observations over
    time.

    This implementation of Driscoll and Kraay's covariance estimator works for
    both, balanced and unbalanced panels, respectively. Furthermore, it is
    capable to handle missing values.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群