全部版块 我的主页
论坛 经济学论坛 三区 公共经济学
4695 6
2005-08-04

Quantile Regression under Misspecification, with an Application

to the U.S. Wage Structure

Joshua Angrist, Victor Chernozhukov, and Iv´an Fern´andez-Val

December 21, 2004

Abstract

Quantile regression (QR) fits a linear model for conditional quantiles, just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that itgives the minimum mean square error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covariates suggests that QR may have a similar property, but the exact nature of the linear approximation has remained elusive. In this paper, we show that QR minimizes a weighted mean-squared error loss function for specification error. The weighting function is an average density of the dependent variable near the true conditional quantile. The weighted least squares interpretation of QR is used to derive an omitted variables bias formula and a partial quantile regression concept, similar to the relationship between partial regression and OLS. We also present asymptotic theory for the QR process under misspecification of the conditional quantile function. The approximation properties of QR are illustrated using wage data from the US census. These results point to major changes in inequality from 1990-2000.Acknowledgment. We thank David Autor, Gary Chamberlain, George Deltas, Bernd Fitzenberger, Jinyong Hahn, Jerry Hausman, Frank Kleibergen, Roger Koenker, Rafael Lalive, Tony Lancaster, Art Lewbel, and Whitney Newey for helpful discussions, and seminar participants at Berkeley, BYU, Brown, Duke, the University of Michigan, Michigan State University, the Harvard-MIT Econometrics Workshop, the University of Toronto, the University of Illinois at Urbana-Champaign, and the 2001 and 2004 Winter Econometric Society Meetings for comments.

[此贴子已经被作者于2005-8-4 12:35:01编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2005-8-4 12:33:00

劳动经济学大牛angrist的力作,

Forthcoming, Econometrica.

21751.rar
大小:(354.1 KB)

 马上下载

本附件包括:

  • download_rp.pdf

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-10-27 10:42:41
很佩服你的遇见能力,现在该文章确实被引用多次!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-11-24 10:57:38
正在学习他的一篇计量的;论文,下下来看看先
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-3-14 10:31:27
Thanks:)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-5-3 22:15:54
刚听老师推荐了,下载来看看
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群