全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
2945 5
2008-10-05
<p></p><p>1.Mr. F. Slob (risk neutral) is thinking of joining a gym. He does not know whether he will have the resolve to frequent the gym once he has paid the membership fee. He could (i) do nothing, (ii) join now for a year and pay £400 membership fee, or (iii) opt for a £50 one month trial membership and decide at the end of the month whether to join for the rest of the year for an additional £400. If he turns out to like the gym, which happens with probability p, his benefit from membership is £800. </p><p>(a) 1.Draw a decision tree and find the optimal decision for all p </p><p>(b) Graph the EVPI as a function of p.</p><p>      </p><p>2.Toby is indifferent between $7 for sure and a lottery with a 50% chance of payoff<br/>zero and a 50% chance of payoff $20.<br/>(a) Show that this is consistent with Toby’s utility of money function U(x)=1-ax<br/>where a=0.93807.<br/>(b) Show that Toby prefers $1 for sure to a lottery with a chance p of payoff Z and<br/>1-p of payoff zero, for any positive Z, if p<0.06. </p>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2008-10-5 16:26:00

这两个题都和风险无关,和VNM就无关。

你只要计算几个选择带来的效用高低就好了。

我英文不大好,嘿嘿。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-10-5 16:35:00
唔~您可不可以说得具体些哈,我还是不太理解
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-10-5 17:07:00
以下是引用我爱金融在2008-10-5 15:49:00的发言:

1.Mr. F. Slob (risk neutral) is thinking of joining a gym. He does not know whether he will have the resolve to frequent the gym once he has paid the membership fee. He could (i) do nothing, (ii) join now for a year and pay £400 membership fee, or (iii) opt for a £50 one month trial membership and decide at the end of the month whether to join for the rest of the year for an additional £400. If he turns out to like the gym, which happens with probability p, his benefit from membership is £800.

(a) 1.Draw a decision tree and find the optimal decision for all p

(b) Graph the EVPI as a function of p.(EVPI是什么?)

2.Toby is indifferent between $7 for sure and a lottery with a 50% chance of payoff
zero and a 50% chance of payoff $20.
(a) Show that this is consistent with Toby’s utility of money function U(x)=1-ax
where a=0.93807.
(b) Show that Toby prefers $1 for sure to a lottery with a chance p of payoff Z and
1-p of payoff zero, for any positive Z, if p<0.06.

关键这两个题目都不好写。

第一个题目,根据题意,建立方程

[p×(800-400)+(1-p)×(-400)]=0

p×(800-450)+(1-p)×(-50)=[p×(800-400)+(1-p)×(-400)]

然后算出两个p,就是变换选择的节点了。

很显然第一个是0.5,第二个是0.875

第二个题目的思路类似,你先试试看吧,如果不行,就翻译成中文,我才敢做。

呵呵,看球去。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-10-5 17:18:00

老师是海归,作业也是英文的

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-10-7 19:48:00
额~这不是我们这次的微观作业题么~一模一样,难道我们是同学?~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群