Table of Contents
Preface 
1. Preliminaries 
      1. Probability and Bayes' Theorem 
      2. Examples on Bayes' Theorem 
      3. Random variables 
      4. Several random variables 
      5. Means and variances 
      6. Exercises on Chapter I 
2. Bayesian Inference for the Normal Distribution 
      1. Nature of Bayesian inference 
      2. Normal prior and likelihood 
      3. Several normal observations with a normal prior 
      4. Dominant likelihoods 
      5. Locally uniform priors 
      6. Highest density regions (HDRs) 
      7. Normal variance 
      8. HDRs for the normal variance 
      9. The role of sufficiency 
     10. Conjugate prior distributions 
     11. The exponential family 
     12. Normal mean and variance both unknown 
     13. Conjugate joint prior for the normal 
     14. Exercises on Chapter 2 
3. Some Other Common Distributions 
     1. The binomial distribution 
     2. Reference prior for the binomial likelihood 
     3. Jeffreys' rule 
     4. The Poisson distribution 
     5. The uniform distribution 
     6. Reference prior for the uniform distribution 
     7. The tramcar problem 
     8. The first digit problem; invariant priors 
     9. The circular normal distribution 
    10. Approximations based on the likelihood 
    11. Reference posterior distributions 
    12. Exercises on Chapter 3 
4. Hypothesis testing 
     1. Hypothesis testing 
     2. One-sided hypothesis tests 
     3. Lindley's method 
     4. Point null hypotheses with prior information 
     5. Point null hypotheses (normal case) 
     6. The Doogian philosophy 
     7. Exercises on Chapter 4 
5. Two-sample problems 
    1. Two-sample problems-both variances unknown 
    2. Variances unknown but equal 
    3. Behrens-Fisher problem 
    4. The Behrens-Fisher controversy 
    5. Inferences concerning a variance ratio 
    6. Comparison of two proportions; the 2x2 tabls 
    7. Exercises on Chapter 5 
6. Correlation, Regression and ANOVA 
     1. Theory of the correlation coefficient 
     2. Examples on correlation 
     3. Regression and the bivariate normal model 
     4. Conjugate prior for bivariate regression 
     5. Comparison of several means-the one-way model 
     6. The two way layout 
     7. The general linear model 
     8. Exercises on Chapter 6 
7. Other Topics 
     1. The likelihood principle 
     2. The stopping rule principle 
     3. Informative stopping rules 
     4. The likelihood principle and reference priors 
     5. Bayesian decision theory 
     6. Bayes linear methods 
     7. Decsion theory and hypothesis testing 
     8. Empirical Bayes methods 
     9. Exercises on Chapter 7 
8. Hierachical methods 
     1. The idea of a hierachical method 
     2. The hierachical normal model 
     3. The baseball example 
     4. The Stein estimator 
     5. Bayesian analysis for an unknown overall mean 
     6. The general linear model revisited 
     7. Exercises on Chapter 8 
9. The Gibbs Sampler 
     1. Introduction to numerical methods 
     2. The EM algorithm 
     3. Data augmentation by Monte Carlo 
     4. The Gibbs sampler 
     5. Rejection sampling 
     6. The Metropolis-Hastings algorithm 
     7. Introduction to WinBUGS 
     8. Generalized linear models 
     9. Exercises on Chapter 9 
A. Common Statistical Distributions 
1. Normal distribution 
2. Chi-squared distribution 
3. Normal approximation to chi-squared 
4. Gamma distribution 
5. Inverse chi-squared distribution 
6. Inverse chi distribution 
7. Log chi-squared distribution 
8. Student's t distribution 
9. Normal/chi-squared distribution 
10. Beta distribution 
11. Binomial distribution 
12. Poisson distribution 
13. Negative binomial distribution 
14. Hypergeometric distribution 
15. Uniform distribution 
16. Pareto distribution 
17. Circular normal distribution 
18. Behrens' distribution 
19. Snedecor's F distribution 
20. Fisher's z distribution 
21. Cauchy distribution 
22. Difference of beta variables 
23. Bivariate normal distribution 
24. Multivariate normal distribution 
25. Distribution of the correlation coefficient 
B. Tables 
1. Percentage points of the Behrens-Fisher distribution 
2. HDRs for the chi-squared distribution 
3. HDRs for the inverse chi-squared distribution 
4. Chi-squared forresponding to HDRs for log chi-squared 
5. Values of F corresponding to HDRs for log F 
C. R Programs 
o Functions for HDRs and for Behrens' distribution 
D. Further Reading 
• References 
• Index 
 [此贴子已经被作者于2008-11-3 14:12:40编辑过]