5 Special Models and Applications 129
5.1 Prediction and Filtering 129
5.1.1 Model of Prediction and Filtering as Special Linear
Model 130
5.1.2 Special Model of Prediction and Filtering 135
5.2 Variance and CovarianceComponents 139
5.2.1 Model and Likelihood Function 139
5.2.2 Noninformative Priors 143
5.2.3 Informative Priors 143
5.2.4 Variance Components 144
5.2.5 Distributions for Variance Components 148
5.2.6 Regularization 150
5.3 Reconstructing and Smoothing of Three-dimensional Images 154
5.3.1 Positron Emission Tomography 155
5.3.2 Image Reconstruction 156
5.3.3 Iterated Conditional Modes Algorithm 158
5.4 Pattern Recognition 159
5.4.1 Classification by Bayes Rule 160
5.4.2 Normal Distribution with Known and Unknown
Parameters 161
5.4.3 Parameters for Texture 163
5.5 BayesianNetworks 167
5.5.1 Systems with Uncertainties 167
5.5.2 Setup of a BayesianNetwork 169
5.5.3 Computation of Probabilities 173
5.5.4 Bayesian Network in Form of a Chain 181
5.5.5 Bayesian Network in Form of a Tree 184
5.5.6 Bayesian Network in Form of a Polytreee 187
6 Numerical Methods 193
6.1 Generating Random Values 193
6.1.1 Generating RandomNumbers 193
6.1.2 InversionMethod 194
6.1.3 RejectionMethod 196
6.1.4 Generating Values for Normally Distributed Random
Variables 197
6.2 Monte Carlo Integration 197
6.2.1 Importance Sampling and SIR Algorithm 198
6.2.2 Crude Monte Carlo Integration 201
6.2.3 Computation of Estimates, Confidence Regions and
Probabilities for Hypotheses 202
6.2.4 Computation of Marginal Distributions 204
6.2.5 Confidence Region for Robust Estimation of
Parameters as Example 207
6.3 MarkovChainMonte CarloMethods 216
6.3.1 Metropolis Algorithm 216
6.3.2 Gibbs Sampler 217
6.3.3 Computation of Estimates, Confidence Regions and
Probabilities for Hypotheses 219
6.3.4 Computation of Marginal Distributions 222
6.3.5 Gibbs Sampler for Computing and Propagating
Large CovarianceMatrices 224
6.3.6 Continuation of the Example: Confidence Region for
Robust Estimation of Parameters 229
References 235
Index 245