全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
6649 48
2015-08-14
th_vOcJvL0R9VTIIxDYL2F41U3npc061Paw.jpeg
Mastering Probabilistic Graphical Models using Python by Ankur Ankan
English | 26 July 2015 | ISBN: 1784394688 | 284 Pages | EPUB/MOBI/PDF (True) | 34.35 MB With: Code Files                                                

If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

About This Book

Gain in-depth knowledge of Probabilistic Graphical Models
Model time-series problems using Dynamic Bayesian Networks
A practical guide to help you apply PGMs to real-world problems

What You Will Learn

Get to know the basics of probability theory and graph theory
Work with Markov networks
Implement Bayesian networks
Exact inference techniques in graphical models such as the variable elimination algorithm
Understand approximate inference techniques in graphical models such as message passing algorithms
Sampling algorithms in graphical models
Grasp details of Naive Bayes with real-world examples
Deploy probabilistic graphical models using various libraries in Python
Gain working details of Hidden Markov models with real-world examples

In Detail

Probabilistic graphical models is a technique in machine learning that uses the concepts of graph theory to concisely represent and optimally predict values in our data problems.

Graphical models gives us techniques to find complex patterns in the data and are widely used in the field of speech recognition, information extraction, image segmentation, and modeling gene regulatory networks.

This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also run different inference algorithms on them. There is an entire chapter that goes on to cover Naive Bayes model and Hidden Markov models. These models have been thoroughly discussed using real-world examples.

本帖隐藏的内容

Mastering Probabilistic Graphical Models Using Python.rar
大小:(32.33 MB)

只需: 10 个论坛币  马上下载

本附件包括:

  • Mastering Probabilistic Graphical Models Using Python.zip
  • Mastering Probabilistic Graphical Models Using Python [eBook].epub
  • Mastering Probabilistic Graphical Models Using Python [eBook].mobi
  • Mastering Probabilistic Graphical Models Using Python [eBook].pdf




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-8-14 00:29:20
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-14 07:38:32
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-14 08:18:15
非常好!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-14 09:34:39
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-14 09:52:59
Mastering Probabilistic Graphical Models
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群