全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LATEX论坛
1072 1
2016-02-26
Abstract

Clinical prognosis of patients can be best described from a longitudinal study and a Markov regression model is an appropriate way of analyzing the prognosis of disease when the outcomes are serially dependent. Mean first passage time (MFPT) is a method to estimate the average number of transitions between the states of a Markov chain. The present study used the secondary data from a longitudinal study which was done during 1982–1986. This study was to illustrate the MFPT among the states of malnutrition, which were classified as Normal, Mild/Moderate and Severe among children aged 5–7 years, in South India. The 95% confidence interval (CI) for the MFPT was calculated using Monte Carlo simulation. Markov regression models were used to test for the association of state transitions across the risk factors. The average time taken for an underweight child to transit from Severe state of malnutrition to become Normal was nearly 2.73 (95% CI 2.60–2.86) years and 3.41 (95% CI 3.25–3.58) years in Rural area and 2.31(95% CI 2.20–2.42) in Urban area. The significant difference between the MFPT for some risk factors are useful to plan interventions. It will especially be useful to find the impact of duration among school-going children on their cognitive disorders.



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-2-26 20:32:19
good material, thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群