ARCH只能是2阶,ARCH(3)的统计数据见下:
>m4<-garchFit(~1+garch(2,0),data=y,trace=F)
> summary(m4)
Title:
GARCH Modelling
Call:
garchFit(formula = ~1 + garch(2, 0), data = y, trace = F)
Mean and Variance Equation:
data ~ 1 + garch(2, 0)
<environment: 0x00000000275ba978>
[data = y]
Conditional Distribution:
norm
Coefficient(s):
mu omega alpha1 alpha2
2.7819e-16 3.5962e+00 1.8306e-01 2.4935e-01
Std. Errors:
based on Hessian
Error Analysis:
Estimate Std. Error t value Pr(>|t|)
mu 2.782e-16 1.404e-01 0.000 1.0000
omega 3.596e+00 5.212e-01 6.900 5.18e-12 ***
alpha1 1.831e-01 9.413e-02 1.945 0.0518 .
alpha2 2.493e-01 1.256e-01 1.985 0.0471 *
---
Log Likelihood:
-552.7848 normalized: -2.274835
Standardised Residuals Tests:
Statistic p-Value
Jarque-Bera Test R Chi^2 76.83994 0
Shapiro-Wilk Test R W 0.9443114 5.338905e-08
Ljung-Box Test R Q(10) 25.46833 0.004525047
Ljung-Box Test R Q(15) 35.98216 0.001778308
Ljung-Box Test R Q(20) 47.08977 0.0005699959
Ljung-Box Test R^2 Q(10) 4.543398 0.919523
Ljung-Box Test R^2 Q(15) 11.60428 0.7087012
Ljung-Box Test R^2 Q(20) 28.9914 0.08792883
LM Arch Test R TR^2 6.300904 0.9001603
Information Criterion Statistics:
AIC BIC SIC HQIC
4.582591 4.640090 4.582061 4.605751
Garch(1,1)是否有需要建模?对数收益率序列是否能用diff,提高ARCH效应?