*** Linear Model ***
Call: lm(formula = V6 ~ V2 + V11 + V3 + V4 + V5 + V7 + V8 + V9 + V10 + V14 + V17,
data = SDF22, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1032 -177.9 -20.33 112.6 1103
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 465.6042 148.6525 3.1322 0.0020
V2 -165.4611 97.0289 -1.7053 0.0897
V11 -25.3774 143.4523 -0.1769 0.8598
V3 -128.7073 85.3830 -1.5074 0.1332
V4 -18.7181 98.7410 -0.1896 0.8498
V5 0.1081 0.0202 5.3438 0.0000
V7 3.0822 0.7325 4.2077 0.0000
V8 -133.5404 123.1058 -1.0848 0.2793
V9 -142.2426 125.4316 -1.1340 0.2581
V10 375.9035 197.6838 1.9015 0.0586
V14 -53.7757 23.5811 -2.2805 0.0236
V17 2.4214 0.4415 5.4849 0.0000
Residual standard error: 311 on 206 degrees of freedom
Multiple R-Squared: 0.4942
F-statistic: 18.3 on 11 and 206 degrees of freedom, the p-value is 0
上面是本人一分调查数据所做的线性回归,V2,V3,V4和V8,V9,V10,V11是0-1变量,0.05的置信度,请问上面的回归拟合得怎样?