全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
11395 11
2016-07-25
有一个指标是自评健康[1-4]分别表示poor,fair,good,excellent.
我看了一篇文章,里面讲:“使用ordered probit 模型为自评健康变量赋值,将之调整成连续变量,并转换为[0,1]区间的一个数值”。然后讲了原理(见图片)

但是我硬是没看懂,所以也不知道放在stata里面应该怎么操作,求哪位大神指点~


PS:我把那篇文章放在附件里面了,然后自评健康指标的解释在85-86页。

附件列表
QQ图片20160725145500.png

原图尺寸 293.86 KB

QQ图片20160725145500.png

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-7-25 16:38:24
所以是要自己选择X去预测健康潜变量?!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-7-25 16:49:47
别告诉我 只是用最后公式(11)把自评健康标准化[0,1]...但是那个h*到底是什么?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-7-25 17:11:37
这个用stata要如何实现...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-7-25 17:18:38
线性回归完,可以求Y的预测值

这里一样啊;模型8估计完,可以求出预测值h*





Title

    [R] oprobit postestimation -- Postestimation tools for oprobit

Description
    The following postestimation commands are available after oprobit:
    Command              Description
    -----------------------------------------------------------------------------------------------------------
        contrast         contrasts and ANOVA-style joint tests of estimates
        estat ic         Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
        estat summarize  summary statistics for the estimation sample
        estat vce        variance-covariance matrix of the estimators (VCE)
        estat (svy)      postestimation statistics for survey data
        estimates        cataloging estimation results
    (1) forecast         dynamic forecasts and simulations
        lincom           point estimates, standard errors, testing, and inference for linear combinations of
                           coefficients
        linktest         link test for model specification
    (2) lrtest           likelihood-ratio test
        margins          marginal means, predictive margins, marginal effects, and average marginal effects
        marginsplot      graph the results from margins (profile plots, interaction plots, etc.)
        nlcom            point estimates, standard errors, testing, and inference for nonlinear combinations of
                           coefficients
        predict          predictions, residuals, influence statistics, and other diagnostic measures
        predictnl        point estimates, standard errors, testing, and inference for generalized predictions
        pwcompare        pairwise comparisons of estimates
        suest            seemingly unrelated estimation
        test             Wald tests of simple and composite linear hypotheses
        testnl           Wald tests of nonlinear hypotheses
    -----------------------------------------------------------------------------------------------------------
    (1) forecast is not appropriate with mi or svy estimation results.
    (2) lrtest is not appropriate with svy estimation results.




Syntax for predict


        predict [type] {stub* | newvar | newvarlist} [if] [in] [, statistic outcome(outcome) nooffset]
        predict [type] {stub* | newvarlist} [if] [in] , scores


    statistic          Description
    -----------------------------------------------------------------------------------------------------------
    Main
      pr               predicted probabilities; the default
      xb               linear prediction
      stdp             standard error of the linear prediction
    -----------------------------------------------------------------------------------------------------------
    If you do not specify outcome(), pr (with one new variable specified) assumes outcome(#1).
    You specify one or k new variables with pr, where k is the number of outcomes.
    You specify one new variable with xb and stdp.
    These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only
      for the estimation sample.




Menu for predict
    Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
        +------+
    ----+ Main +-----------------------------------------------------------------------------------------------
    pr, the default, calculates the predicted probabilities.  If you do not also specify the outcome() option,
        you specify k new variables, where k is the number of categories of the dependent variable.  Say that
        you fit a model by typing oprobit result x1 x2, and result takes on three values.  Then you could type
        predict p1 p2 p3 to obtain all three predicted probabilities.  If you specify the outcome() option, you
        must specify one new variable.  Say that result takes on the values 1, 2, and 3.  Typing predict p1,
        outcome(1) would produce the same p1.


    xb calculates the linear prediction.  You specify one new variable, for example, predict linear, xb.  The
        linear prediction is defined, ignoring the contribution of the estimated cutpoints.


    stdp calculates the standard error of the linear prediction.  You specify one new variable, for example,
        predict se, stdp.


    outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.  outcome()
        should contain either one value of the dependent variable or one of #1, #2, ..., with #1 meaning the
        first category of the dependent variable, #2 meaning the second category, etc.


    nooffset is relevant only if you specified offset(varname) for oprobit.  It modifies the calculations made
        by predict so that they ignore the offset variable; the linear prediction is treated as xb rather than
        as xb + offset.


    scores calculates equation-level score variables.  The number of score variables created will equal the
        number of outcomes in the model.  If the number of outcomes in the model was k, then


        The first new variable will contain the derivative of the log likelihood with respect to the regression
        equation.


        The other new variables will contain the derivative of the log likelihood with respect to the cutpoints.




Examples

    Setup
        . webuse fullauto
        . oprobit rep77 i.foreign length mpg


    Predicted probabilities of an excellent repair record
        . predict exc if e(sample), outcome(5)


    Histogram of predicted probabilities
        . histogram exc


    Linear prediction
        . predict pscore, xb


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-7-25 17:23:23
蓝色 发表于 2016-7-25 17:18
线性回归完,可以求Y的预测值

这里一样啊;模型8估计完,可以求出预测值h*
我晓得了,少看了文章中的一句话“回归方程( 8) 和( 12) 中使用的各变量的定义和混合横截面数据的描述性统计见表 1。”
我先试试看~谢谢蓝老师~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群