全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
1960 0
2016-09-10
悬赏 50 个论坛币 未解决
Let % be a binary relation defined on RL + that is complete and transitive. Let x,y ∈ RL + be consumption vectors. Here are some important definitions: • The relation % is convex if for all x and y such that x % y, αx + (1−α)y % y for all α ∈ [0,1].2 • The function u: RL + → R is concave if for all x,y ∈ RL +, and α ∈ [0,1], u(αx + (1−α)y) ≥ αu(x) +(1 −α)u(y). • The function u: RL + → R is quasi-concave if for all x,y ∈ RL +, and α ∈ [0,1], u(αx + (1 − α)y) ≥min {u(x),u(y)}.

求证明:Suppose there are two goods, i.e. L = 2. Consider the utility function u(x) = x2 1x2 2. Verify that this function is not concave. Verify that it is quasi-concave.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群