全部版块 我的主页
论坛 休闲区 十二区 休闲灌水
2475 8
2016-10-20
Graphical Models, Exponential Families, and Variational Inference pdf下载

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances-including the key problems of computing marginals and modes of probability distributions-are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, Graphical Models, Exponential Families and Variational Inference develops general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. It describes how a wide variety of algorithms- among them sum-product, cluster variational methods, expectation-propagation, mean field methods, and max-product-can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

作者简介
Michael I. Jordan is Professor of Computer Science and of Statistics at the University of California, Berkeley, and recipient of the ACM/AAAI Allen Newell Award.

目录
1: Introduction 2: Background 3: Graphical models as exponential families 4: Sum product, Bethe-Kikuchi, and expectation-propagation 5: Mean field methods 6: Variational methods in parameter estimation 7: Convex relaxations and upper bounds 8: Max-product and LP relaxations 9: Moment matrices and conic relaxations 10: Discussion. A: Background Material B: Proofs for exponential families and duality C: Variational principles for multivariate Gaussians D: Clustering and augmented hypergraphs E: Miscellaneous results References.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-10-21 18:04:38
楼主好人,辛苦了!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-6 09:08:04
附件呢??
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-12-6 10:01:04
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-6-16 01:02:23
因为太难了!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-6-16 16:54:39
貌似不错~~~~~~~~~~~~~~~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群