The information provided by macroeconomic fundamentals has economic value
Another feature emerging from Figure 2 is that, naturally, there is substantial uncertainty around future exchange rates, even when using proper econometric models. This raises the question of the overall usefulness of exchange rates forecasts. To try to answer this question, we build trading strategies based on the competing forecast models, taking the perspective of a US investor with a one-month trading horizon. The analysis reveals an economic value of controlling for both parameter time variation, and for the informational content provided by other currencies and by macroeconomic fundamentals. Controlling for the latter in a time-varying parameter model with changing volatilities yields the highest portfolio returns across all competing strategies.3
Conclusions
Modelling time variation in the cross-rate relationships, and in the volatilities of the shocks hitting the economic system, significantly improves exchange rates forecasts. In fact, the more sophisticated econometric models deliver forecast confidence intervals that are on average accurately calibrated, and they appear to perform particularly well in high-volatility periods.
Moreover, trading strategies based on the different forecast models show that controlling for parameter time variation and for macroeconomic fundamentals leads to higher portfolio returns, and to higher values for investors. Hence, allowing for parameter time variation reveals an economic value of the information provided by macroeconomic fundamentals, though it is not needed for the fundamentals to show predictive content at larger horizons.
References
Abbate, A, and M Marcellino (2017), “Point, interval and density forecasts of exchange rate with time-varying parameter models”, CEPR Discussion Paper no. 11559, forthcoming in the Journal of Royal Statistical Society, Series A.
Cheung, Y-W, and M D Chinn (2001), “Currency traders and exchange rate dynamics: a survey of the US market”, Journal of International Money and Finance, 20 (4):439–471.
Della Corte, P, L Sarno, and I Tsiakas (2009), “An economic evaluation of empirical exchange rate models”, Review of Financial Studies, 22 (9): 3491–3530.
Koop, G, and D Korobilis (2013), “Large time-varying parameter VARs”, Journal of Econometrics, 177: 185–198.
Meese, R, and K Rogoff (1983), “The out-of-sample failure of empirical exchange rate models: Sampling error or misspecification?” In Exchange Rates and International Macroeconomics, NBER Chapters, 67–112.
Rossi, B (2013), “Exchange rate predictability”, Journal of Economic Literature, 51 (4).
Rossi, B (2006), “Are exchange rates really random walks? Some evidence robust to parameter instability”, Macroeconomic Dynamics, 10 (1): 20–38.
Endnotes
[1] For example, see the evidence provided by Rossi (2006). Moreover, instability may arise from trading strategies that involve frequent changes to the weight attached to fundamentals, as documented through survey evidence by Cheung and Chinn (2001).
[2] These macroeconomic fundamentals are typically indicated in the economic literature as potential drivers of exchange rates. See Section 2 of Abbate and Marcellino (2017) for a more thorough discussion.
[3] This result is confirmed by using a wide range of performance criteria, including performance fees and breakeven transaction costs. We refer to Section 5 of Abbate and Marcellino (2017), as well as to Della Corte et al. (2009) for more results and a thorough discussion.