全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
3519 22
2017-06-04
1. Introduction: nilearn in a nutshell

    1.1. What is nilearn: MVPA, decoding, predictive models, functional connectivity
    1.2. Installing nilearn
    1.3. Python for NeuroImaging, a quick start

2. Decoding and MVPA: predicting from brain images

    2.1. An introduction to decoding
    2.2. Choosing the right predictive model
    2.3. SpaceNet: decoding with spatial structure for better maps
    2.4. Searchlight : finding voxels containing information

3. Functional connectivity and resting state

    3.1. Extracting times series to build a functional connectome
    3.2. Connectome extraction: inverse covariance for direct connections
    3.3. Extracting resting-state networks: ICA and related
    3.4. Region Extraction for better brain parcellations
    3.5. Clustering to parcellate the brain in regions

4. Plotting brain images

    4.1. Different plotting functions
    4.2. Different display modes
    4.3. Adding overlays, edges, contours, contour fillings and markers
    4.4. Displaying or saving to an image file
    4.5. Surface plotting

5. Manipulation brain volumes with nilearn

    5.1. Input and output: neuroimaging data representation
    5.2. Manipulating images: resampling, smoothing, masking, ROIs...
    5.3. From neuroimaging volumes to data matrices: the masker objects

6. Advanced usage: manual pipelines and scaling up

    6.1. Building your own neuroimaging machine-learning pipeline

7. Reference documentation: all nilearn functions

    7.1. nilearn.connectome: Functional Connectivity
    7.2. nilearn.datasets: Automatic Dataset Fetching
    7.3. nilearn.decoding: Decoding
    7.4. nilearn.decomposition: Multivariate decompositions
    7.5. nilearn.image: Image processing and resampling utilities
    7.6. nilearn.input_data: Loading and Processing files easily
    7.7. nilearn.masking: Data Masking Utilities
    7.8. nilearn.regions: Operating on regions
    7.9. nilearn.mass_univariate: Mass-univariate analysis
    7.10. nilearn.plotting: Plotting brain data
    7.11. nilearn.signal: Preprocessing Time Series

8. Nilearn usage examples

    8.1. General examples
    8.2. Visualization of brain images
    8.3. Decoding and predicting from brain images
    8.4. Functional connectivity
    8.5. Manipulating brain image volumes
    8.6. Advanced statistical analysis of brain images

user guide and examples:

本帖隐藏的内容


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-6-4 16:56:43
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-6-4 17:03:22
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-6-4 17:06:49
谢谢了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-6-4 19:03:59
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-6-4 20:43:02
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群