全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1352 4
2017-08-13

Statistics for Machine Learning


本帖隐藏的内容

https://github.com/PacktPublishing/Statistics-for-Machine-Learning


This is the code repository for Statistics for Machine Learning, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

About the Book

Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will come across programs for performing tasks such as model, parameter fitting, regression, classification, density collection, working with vectors, matrices, and more. By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem.

Instructions and Navigation

All of the code is organized into folders. Each folder starts with a number followed by the application name. For example, Chapter02.

The code will look like the following:

>>> import numpy as np>>> from scipy import stats>>> data = np.array([4,5,1,2,7,2,6,9,3])# Calculate Mean>>> dt_mean = np.mean(data) ; print ("Mean :",round(dt_mean,2))# Calculate Median>>> dt_median = np.median(data) ; print ("Median :",dt_median)# Calculate Mode>>> dt_mode = stats.mode(data); print ("Mode :",dt_mode[0][0])

This book assumes that you know the basics of Python and R and how to install the libraries. It does not assume that you are already equipped with the knowledge of advanced statistics and mathematics, like linear algebra and so on. The following versions of software are used throughout this book, but it should run fine with any more recent ones as well:

  • Anaconda 3–4.3.1 (all Python and its relevant packages are included in Anaconda, Python 3.6.1, NumPy 1.12.1, Pandas 0.19.2, and scikit-learn 0.18.1)
  • R 3.4.0 and RStudio 1.0.143
  • Theano 0.9.0
  • Keras 2.0.2
Related ProductsSuggestions and Feedback

Click here if you have any feedback or suggestions.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-8-13 05:08:00
书呢?光是代码?这是搞啥?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-13 05:24:39
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-13 06:31:18
谢谢楼主分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-15 10:27:05
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群