全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
9013 16
2009-10-27
包含Wiley Series中的 Simulation and the Monte Carlo Method (2ed) by Reuven Y. Rubinstein and Dirk P. Kroese
Simulation and the Monte Carlo Method
目录
Preface.
Acknowledgments.
1. Preliminaries 1.
1.1 Random Experiments.
1.2 Conditional Probability and Independence.
1.3 Random Variables and Probability Distributions.
1.4 Some Important Distributions.
1.5 Expectation.
1.6 Joint Distributions.
1.7 Functions of Random Variables.
1.8 Transforms.
1.9 Jointly Normal Random Variables.
1.10 Limit Theorems.
1.11 Poisson Processes.
1.12 Markov Processes.
1.12.1 Markov Chains.
1.12.2 Markov Jump Processes.
1.13 Efficiency of Estimators.
1.14 Information.
1.15 Convex Optimization and Duality.
1.15.1 Lagrangian Method.
1.15.2 Duality.
Problems.
References.

2. Random Number, Random Variable and Stochastic Process Generation.
2.1 Introduction.
2.2 Random Number Generation.
2.3 Random Variable Generation.
2.3.1 Inverse-Transform Method.
2.3.2 Alias Method.
2.3.3 Composition Method.
2.3.4 Acceptance-Rejection Method.
2.4 Generating From Commonly Used Distributions.
2.4.1 Generating Continuous Random Variables.
2.4.2 Generating Discrete Random Variables.
2.5 Random Vector Generation.
2.5.1 Vector Acceptance-Rejection Method.
2.5.2 Generating Variables From a Multinormal Distribution.
2.5.3 Generating Uniform Random Vectors Over a Simplex.
2.5.4 Generating Random Vectors, Uniformly Distributed Over a Unit Hyper-Ball and Hyper-Sphere.
2.5.5 Generating Random Vectors, Uniformly Distributed Over a Hyper-Ellipsoid.
2.6 Generating Poisson Processes.
2.7 Generating Markov Chains and Markov Jump Processes.
2.8 Generating Random Permutations.
Problems.
References.

3. Simulation of Discrete Event Systems.
3.1 Simulation Models.
3.2 Simulation Clock and Event List for DEDS.
3.3 Discrete Event Simulation.
3.3.1 Tandem Queue.
3.3.2 Repairman Problem.
Problems.
References.

4. Statistical Analysis of Discrete Event Systems.
4.1 Introduction.
4.2 Static Simulation Models.
4.3 Dynamic Simulation Models.
4.3.1 Finite-Horizon Simulation.
4.3.2 Steady-State Simulation.
4.4 The Bootstrap Method.
Problems.
References.

5. Controlling the Variance.
5.1 Introduction.
5.2 Common and Antithetic Random Variables.
5.3 Control Variables.
5.4 Conditional Monte Carlo.
5.4.1 Variance Reduction for Reliability Models.
5.5 Stratified Sampling.
5.6 Importance Sampling.
5.6.1 The Variance Minimization Method.
5.6.2 The Cross-Entropy Method.
5.7 Sequential Importance Sampling.
5.7.1 Non-linear Filtering for Hidden Markov Models.
5.8 The Transform Likelihood Ratio Method.
5.9 Preventing the Degeneracy of Importance Sampling.
5.9.1 The Two-Stage Screening Algorithm.
5.9.2 Case Study.
Problems.
References.

6. Markov Chain Monte Carlo.
6.1 Introduction.
6.2 The Metropolis-Hastings Algorithm.
6.3 The Hit-and-Run Sampler.
6.4 The Gibbs Sampler.
6.5 Ising and Potts Models.
6.6 Bayesian Statistics.
6.7 Other Markov Samplers.
6.8 Simulated Annealing.
6.9 Perfect Sampling.
Problems.
References.

7. Sensitivity Analysis and Monte Carlo Optimization.
7.1 Introduction.
7.2 The Score Function Method for Sensitivity Analysis of DESS.
7.3 Simulation-Based Optimization of DESS.
7.3.1 Stochastic Approximation.
7.3.2 The Stochastic Counterpart Method.
7.4 Sensitivity Analysis of DEDS.
Problems.
References.

8. The Cross-Entropy Method.
8.1 Introduction.
8.2 Estimation of Rare Event Probabilities.
8.2.1 The Root-Finding Problem.
8.2.2 The Screening Method for Rare Events.
8.3 The CE-Method for Optimization.
8.4 The Max-cut Problem.
8.5 The Partition Problem.
8.6 The Travelling Salesman Problem.
8.6.1 Incomplete Graphs.
8.6.2 Node Placement.
8.6.3 Case Studies.
8.7 Continuous Optimization.
8.8 Noisy Optimization.
Problems.
References.

9. Counting via Monte Carlo.
9.1 Counting Problems.
9.2 Satisfiability Problem.
9.2.1 Random K-SAT (K-RSAT).
9.3 The Rare-Event Framework for Counting.
9.3.1 Rare-Events for the Satisfiability Problem.
9.4 Other Randomized Algorithms for Counting.
9.4.1 Complexity of Randomized Algorithms: FPRAS and FPAUS.
9.5 MinxEnt and Parametric MinxEnt.
9.5.1 The MinxEnt Method.
9.5.2 Rare-Event Probability Estimation Using PME.
9.6 PME for COPs and Decision Making.
9.7 Numerical Results.
problems.
References.

Appendix A.
A.1 Cholesky Square Root Method.
A.2 Exact Sampling from a Conditional Bernoulli Distribution.
A.3 Exponential Families.
A.4 Sensitivity Analysis.
A.4.1 Convexity Results.
A.4.2 Monotonicity Results.
A.5 A simple implementation of the CE algorithm for optimizing the 'peaks' function.
A.6 Discrete-time Kalman Filter.
A.7 Bernoulli Disruption Problem.
A.8 Complexity of Stochastic Programming Problems.
附件列表

Simulation and the Monte Carlo Method (2ed).zip

大小:13.71 MB

只需: 10 个论坛币  马上下载

本附件包括:

  • Simulation and the Monte Carlo Method (2ed).pdf

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-10-27 22:13:32
谢谢楼主!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-10-27 22:29:53
为什么下来后打不开呢?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-10-27 23:25:21
刚才试了,打开是没问题的。
如果你打不开,把你的邮箱发给我吧,要大点的。
我把文件发到你邮箱里。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-10-28 00:41:05
Thank you so much! I've been looking for it for a while!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-10-28 23:20:41
the pleasure is mine if it can be of some help.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群