全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LATEX论坛
1956 4
2017-09-12
SVM (Support Vector Machine)

It is a classification method. In this algorithm, we plot each data item as a point in n-dimensional space (where n is number of features you have) with the value of each feature being the value of a particular coordinate.

For example, if we only had two features like Height and Hair length of an individual, we’d first plot these two variables in two dimensional space where each point has two co-ordinates (these co-ordinates are known as Support Vectors)

Now, we will find some line that splits the data between the two differently classified groups of data. This will be the line such that the distances from the closest point in each of the two groups will be farthest away.

In the example shown above, the line which splits the data into two differently classified groups is the black line, since the two closest points are the farthest apart from the line. This line is our classifier. Then, depending on where the testing data lands on either side of the line, that’s what class we can classify the new data as.

More: Simplified Version of Support Vector Machine

Think of this algorithm as playing JezzBall in n-dimensional space. The tweaks in the game are:

  • You can draw lines / planes at any angles (rather than just horizontal or vertical as in classic game)
  • The objective of the game is to segregate balls of different colors in different rooms.
  • And the balls are not moving.

Python Code#Import Libraryfrom sklearn import svm#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset# Create SVM classification object model = svm.svc() # there is various option associated with it, this is simple for classification. You can refer link, for mo# re detail.# Train the model using the training sets and check scoremodel.fit(X, y)model.score(X, y)#Predict Outputpredicted= model.predict(x_test)

R Code

library(e1071)x <- cbind(x_train,y_train)# Fitting modelfit <-svm(y_train ~ ., data = x)summary(fit)#Predict Output predicted= predict(fit,x_test)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-9-12 16:21:50
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-12 19:32:22
谢谢楼主分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-12 19:33:12
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-9-13 10:57:29
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群