全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
606 0
2017-09-20
摘要:传统固定学习率的RBF神经网络在金融时间序列预测方面已经有比较成功的应用,但网络学习率的选择问题却给传统RBF神经网络的使用带来了不便.利用梯度下降法及优化方法推导出了RBF神经网络的动态最优学习率并将其应用于网络学习算法,具有最优学习率的RBF神经网络能够在保证网络稳定学习的同时兼顾网络的收敛速度.为了检验具有动态最优学习率的RBF神经网络的预测效果,对沪深300指数波动率进行了预测实验.实验结果表明,具有动态最优学习率的RBF神经网络比传统的固定学习率的RBF神经网络有着更快的收敛速度,同时也避免了人为选定学习率的不便.

原文链接:http://www.cqvip.com/qk/90905x/201204/41738349.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群