全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
576 0
2017-09-20
摘要:分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法与RBF神经网络结合形成自适应变系数粒子群-径向基(AVCPSO-RBF)神经网络混合优化算法。基于此优化算法,建立了短期电价预测模型,并利用贵州电网历史数据进行短期电价预测。仿真计算结果表明,AVCPSO-RBF混合优化算法在短期电价预测中优于传统RBF神经网络法和PSO-RBF神经网络方法,克服了上述2种方法的缺点,改善了RBF神经网络的泛化能力,具有输出稳定性好、预测精度高、收敛速度快等特点,使用该方法得到的各日预测电价的平均百分比误差可控制在2%以内,平均绝对误差最大值为1.652RMB/MW·h。

原文链接:http://www.cqvip.com/QK/91996X/201001/32833705.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群