摘要:为提高煤与瓦斯突出预测的效率和准确率,将主成分分析(PCA)法与神经网络相结合,对煤与瓦斯突出进行预测。以平顶山八矿为研究对象,基于地质动力区划方法,搜集影响煤与瓦斯突出的因素的相关数据。通过PCA法提取影响因素的主成分,选取贡献率大于80%的3个主成分,代替原有的9个影响因素,将其作为反向传播(BP)神经网络的3个输入参数。将突出强度划分为4个等级,建立PCA-BP煤与瓦斯突出预测模型。选取典型的突出样本对PCA-BP
神经网络进行训练,用检验样本检验训练好的网络,结果表明预测符合实际情况。
原文链接:http://www.cqvip.com/QK/97423X/201304/46150347.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)