摘要:基于降水过程存在周期性、随机性的特点,应用时间序列典型分解法提取原降水量序列中的趋势成分和周期性成分,对于剩余平稳序列成分,采取BP神经网络模型对其进行模拟;最后建立降水量的BP神经网络时间序列预测模型。以宿迁市近14年的月平均降水资料为实例对该模型进行了具体的应用。结果表明:基于BP神经网络时间序列预测模型可以有效地预测降水量,并和传统的时间序列加法模型进行了比较,结果显示基于BP
神经网络的时间序列预测优于传统的时间序列加法模型,模型具有较高的精度和稳定性。
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=35740239
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)