摘要:针对神经网络模型预测结果的随机性,构建了一种紧致性小波神经网络工具箱。该方法将小波函数移植到BP网络隐层,并采用一种随机确定状态命令获得确定的预测结果。与编程实现的小波神经网络和BP网络比较,该方法适合于大批量数据训练,对数据样本的适应能力和鲁棒性强,尤其对高频随机时间序列有更好的适应能力,具有预测结果确定及实用性强等特点,可显著提高模型的训练速度、预测精度和预测效率。基于小波包变换和小波
神经网络的瓦斯涌出量预测实验证明了所提方法的有效性。
原文链接:http://www.cqvip.com/QK/94832X/201304/45206012.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)