摘要:BP神经网络已成为研究空气污染预测的有效工具之一。文章利用近十年北京市地面气象观测资料和空气污染指数数据,通过BP神经网络技术构建了不同季节的空气污染指数预测模型,对北京市空气污染指数进行了预测。通过相关系数分析法,对比分析了预测结果与实际监测结果,研究结果表明:春、夏、秋、冬季的预测值与监测值线性相关系数分别为0.81、0.84、0.89、0.85。北京春季常伴随有沙尘天气,而文章并没有考虑沙尘天气对预测模型的影响,因此春季BP神经网络预测精度在四季中最低,其预测值与监测值的线性相关系数为0.81。由于秋季不同空气质量级别的数据都有较多分布,因此该季节构建的网络更具有代表性,其预测精度在四季中最高,预测值与监测值的线性相关系数高达0.89。总之,BP
神经网络模型对于北京空气污染指数预测是行之有效的。
原文链接:http://www.cqvip.com/qk/90776x/2013003/45288100.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)