摘要:提出一种改进的BP神经网络处理板形缺陷数据的方法,建立双隐层BP神经网络模型,并对Sigmoid激活函数的形状进行调节。将其应用到冷轧的板形缺陷识别中,与利用Levenberg-Marquardt规则训练的BP
神经网络预测结果作对比,表明该方法不仅有效地减少双隐层BP网络的学习时间,同时改善了网络的泛化能力,有利于板形缺陷在线识别。
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=36065766
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)