全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
864 0
2017-09-24
摘要:HEC1(癌症高表达蛋白)是纺锤体检查点控制、着丝粒功能、细胞存活的关键的有丝分裂调节器,与原发性乳腺癌的不良预后有关.筛选具有高亲和力的HEC1新型抑制剂对探索乳腺癌的靶向治疗具有重要意义.本文从结构多样性的化合物库中筛选HEC1抑制剂.通过对分子描述符的特征筛选,采用支持向量机(SVM)和随机森林(RF)方法分别对HEC1抑制剂和非抑制剂建立了分类模型.经对比,RF模型显示了更好的预测精度.我们采用RF模型对HEC1抑制剂进行了虚拟筛选,从"in-house"实体库筛选得到2个潜在的HEC1抑制剂分子.随后对筛出的化合物进行了体外活性实验,发现对乳腺癌细胞株MDA-MB-468和MDA-MB-231均有一定程度的抗肿瘤活性.研究结果表明,机器学习方法对于设计和虚拟筛选HEC1抑制剂有良好的效果.

原文链接:http://www.cqvip.com/QK/92644X/201509/665934773.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群