全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
568 0
2017-09-24
摘要:超短期风电功率爬坡事件越来越影响风电机组在电网中的运行。当前国内对爬坡事件的定义并不明确,缺少相应的预测方法。阐述了风电功率爬坡事件的物理含义,提出了一种基于原子稀疏分解和反向传播神经网络(BPNN)的组合预测方法,分别建立了原子分量自预测模型、残差分量预测模型和组合预测模型。以实际风电场数据进行验证,对不同预测方法和不同时间空间实测数据进行了较全面的分析,结果表明该方法可以提高预测精度,并能降低绝对平均误差和均方根误差计算值的统计区间。

原文链接:http://www.cqvip.com/QK/91993X/201412/68768884504849524950484850.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群