全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
630 0
2017-09-25
摘要:传统的自然语言处理方法是将大量手工制定的特征输入到统计学习模型中,以完成文本的加工处理。条件随机场模型在多种自然语言处理任务中都取得了较好的效果,但手工特征制定的方式以及庞大的特征数量增加了模型建立的难度,降低了模型运算的速度,同时易使模型"过拟合"。为了解决上述问题,提出一种张量扩展的条件随机场模型,利用张量变换自动构建出复杂的特征,减少了手工特征制定的工作量,并使用Tucker分解算法加速模型,得到的模型可用于多种自然语言处理任务。实验表明,在提取相同基本特征的前提下,与传统的条件随机场模型相比,模型在多种自然语言处理任务中的性能都有所提高,具有一定的使用价值。

原文链接:http://www.cqvip.com/QK/93231X/201605/668603196.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群