摘要:当前低分辨率图像增强和细节匹配方法具有细节易丢失、边缘模糊、无法适应图像平移、旋转等变化的弊端,导致图像增强与细节匹配性能低下.为此,提出一种新的基于
机器学习的低分辨率图像增强和细节匹配方法.通过建立一个间隔最大的超平面获取最小二乘支持向量机分类器.在待处理低分辨率图像中选择一块图像,将图像的每个3×3邻域像素看作一个训练样本,通过最小二乘支持向量机法对其进行训练,输出增强像素点.通过复数小波对图像特征进行描述,利用最小二乘支持向量机获取最优判定准则函数,输出最优匹配的目标子图像.实验结果表明,所提方法有很高的峰值信噪比、边缘保持指数和等效视数,很低的归一化均方误差、均值和方差,整体性能优.
原文链接:http://d.wanfangdata.com.cn/Periodical/kxjsygc201718043
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)