全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
954 0
2017-09-29
摘要:楼宇短期负荷预测是楼宇能效管理系统中对用能子系统进行评估诊断、优化控制以及调度规划的重要基础。针对智能楼宇参与需求响应所需高精度、实时负荷信息的要求,提出一种基于数据挖掘支持向量机的楼宇短期负荷预测方法。选择与待预测时点相似相近的样本数据集,采用K-means算法对样本数据集中的温度、湿度、气压等气象数据进行聚类,根据聚类结果提取训练样本,最后采用支持向量机(SVM)算法建立负荷预测模型。实际应用结果表明,该方法预测结果平均相对误差为1.34%,相对误差在1%以内的概率达到67.5%,优于现有的时间序列法、同结构SVM法、不考虑气象因素的DMSVM法等方法。

原文链接:http://d.wanfangdata.com.cn/Periodical/jdq201607013

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群