摘要:由于概率
神经网络(PNN)以贝叶斯概率方法描述测量数据,因而PNN在有噪声条件下的结构损伤检测方面,具有巨大的潜力.而PNN中高斯核函数的宽度,严重影响网络的泛化能力,本文提出了一种运用自适应PNN进行复杂结构的损伤定位研究方法,并与传统PNN对大跨悬索桥的损伤定位进行了仿真性能比较;同时讨论了噪声程度、特征向量简化对损伤识别精度的影响.研究发现,运用自适应PNN进行损伤定位,不仅性能优于传统PNN,而且进行特征向量简化时,可以提高损伤定位的识别精度.
原文链接:http://www.cqvip.com//QK/90342X/200308/8510483.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)