摘要:知识共享型网站为自动问答系统带来了新的研究契机。但用户提供的问题及其答案质量参差不齐,在提供有用信息的同时可能包含各种无关甚至恶意的信息。对此类信息进行判别和过滤,并选取高质量的问题与答案对,有助于在基于社区的自动问答系统中重用相关问题的答案以提高问答系统的服务质量。首先从中文社区问答网站上抓取大量问题及答案,利用社会网络的方法对提问者和回答者的互动关系及特点进行了统计与分析。然后基于给定的问答质量判定标准,对3000多个问题及其答案进行了人工标注。并通过提取文本和非文本两类特征集,利用
机器学习算法设计和实现了基于特征集的问答质量分类器。试验结果表明其精度和召回率均在70%以上。最后分析了影响社区网络中问答质量的主要因素。
原文链接:http://www.cqvip.com//QK/92817X/201106/38166758.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)